Oral administration of sodium butyrate reduces chemically-induced preneoplastic lesions in experimental carcinogenesis

Authors

  • Maria do Carmo Gouveia PELUZIO Universidade Federal de Viçosa
  • Ana Paula Boroni MOREIRA Universidade Federal de Viçosa
  • Isabela Campelo de QUEIROZ Universidade Federal de Viçosa
  • Cristina Maria Ganns Chaves DIAS Universidade Federal do Tocantins
  • Sylvia do Carmo Castro FRANCESCHINI Universidade Federal de Viçosa
  • Jacqueline Isaura ALVAREZ-LEITE Universidade Federal de Viçosa
  • Antônio José NATALI Universidade Federal de Viçosa
  • Céphora Maria SABARENSE Universidade Federal de Viçosa

Keywords:

Fatty acids, Butyrate, Cyclins, Colonic neoplasms, tumor markers, biological

Abstract

Objective
The objective was to assess the effects of oral administration of sodium butyrate on colon carcinogenesis.

Methods
Carcinogenesis in adult male Wistar rats was induced with 1.2-dimethylhydrazine injections at a dose of 40mg/kg of body weight. A solution of sodium butyrate (3.4%) was given ad libitum for 4 weeks (butyrate group, n=16) instead of water (control group, n=9). Rats were killed 17 weeks after 1.2-dimethylhydrazine administration. Aberrant crypt foci and expression of the messenger ribonucleic acid (mRNA) of cyclins D1 and E were quantified in the colon. Alterations in the fatty acid profile of the colon, liver, intra-abdominal fat and feces were also analyzed.

Results
A significant decrease in aberrant crypt foci was found in the group taking butyrate. No differences were found between the groups in the mRNA expression of cyclins D1 and E. Nevertheless, butyrate intake decreased the content of stearic and oleic acids in the intra-abdominal fat and docosahexaenoic acid in the liver. Moreover, these rats presented higher percentages of linoleic acid in the intra-abdominal fat than control rats.

Conclusion
The data indicate that butyrate use in rats reduced preneoplastic lesions and changes in the intra-abdominal fat and fatty acid profile of the liver, commonly found in colon carcinogenesis. 

References

Brouns F, Kettlitz B, Arrigoni E. Resistant starch and “the butyrate revolution”. Trends Food Sci Technol. 2002; 13(8):251-61. doi: 10.1016/S0924-2244(02) 00131-0.

Bingham SA, Day NE, Luben R, Ferrari P, Slimani N, Norat T, et al. Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): an observational study. Lancet. 2003; 361(9368):1496-501. doi: 10.1016/S0140-6736(03)13174-1.

Peters U, Sinha R, Chatterjee N, Subar AF, Ziegler RG, Kulldorff, M, et al. Dietary fibre and colorectal adenoma in a colorectal cancer early. Lancet. 2003; 361(9368):1491-5. doi: 10.1016/S0140-6736(03)13173-X.

Cummings JH, Pomare EW, Branch WJ, Naylor CP, McFarlane GT. Short chain fatty acids in human large intestinal, portal, hepatic and venous blood. Gut. 1987; 28(10):1221-7. doi: 10.1136/gut.28.10.1221.

Grasten SM, Juntunen KS, Poutanen KS, Gylling HK, Miettinen TA, Mykkanen HM. Rye bread improves bowel function and decreases the concentration of some compounds that are putative colon cancer risk markers in middle-aged women and men. J Nutr. 2000; 130(9):2215-21.

Hu Y, Martin J, Leu RL, Young GP. The colonic response to genotoxic carcinogens in the rat: regulation by dietary fibre. Carcinogenesis. 2002; 23(7):1131-7.

Coradini D, Pellizzaro C, Marimpietri D, Abolafio G, Daidone MG. Sodium butyrate modulates cell cycle-related proteins in HT29 human colonic adenocarcinoma cells. Cell Prolif. 2000; 33(3): 139-46. doi: 10.1046/j.1365-2184.2000.00173.x.

Bardon S, Foussard V, Fournel S, Loubat A. Monoterpenes inhibit proliferation of human colon cancer cells by modulating cell cycle-related protein expression. Cancer Lett. 2002; 181(2): 187-94. doi: 10.1016/S0304-3835(02)00047-2.

Ramos MG, Rabelo FLA, Duarte T, Gazzinelli RT, Alvarez-Leite JI. Butyrate induces apoptosis in murine macrophages via caspase-3, but independent of autocrine synthesis of tumor necrosis factor and nitric oxide. Braz J Med Biol Res. 2002; 35(2):161-73. doi: 10.1590/S0100879X2002000200004.

Tabuchi Y, Arai Y, Kondo T, Takeguchi N, Asano S. Identification of genes responsive to sodium butyrate in colonic epithelial cells. Biochem Biophys Res Comm. 2002; 293(8):1287-94. doi: 10.1016/S0006-291X(02)00365-0.

Neoptolemos JP, Husband D, Imray C, Rowley S, Lawson N. Arachidonic acid and docosahexaenoic acid are increased in human colorectal cancer. Gut. 1991; 32(3):278-281. doi: 10.1136/gut.32.3.278.

Hendrickse CW, Kelly RW, Radley S, Donovan IA, Keighley MR, Neoptolemos JP. Lipid peroxidation and prostaglandins in colorectal cancer. Br J Surg. 1994; 81(8):1219-23. doi: 10.1002/bjs.1800810849.

Fernandez-Banares F, Esteve M, Navarro E, Cabre E, Boix J, Abad-Lacruz A, et al. Changes of the mucosal n3 and n6 fatty acid status occur early in the colorectal adenoma-carcinoma sequence. Gut. 1996; 38(2):254-9.

Baro L, Hermoso JC, Nunez MC, Jimenez-Rios JA, Gil A. Abnormalities in plasma and red blood cell fatty acid profiles of patients with colorectal cancer. Br J Cancer. 1998; 77(11):1978-83.

Rodrigues MAM, Silva LAG, Salvadori DMF, Camargo JLV, Montenegro MR. Aberrant crypt foci and colon cancer: comparison between a short - and medium-term bioassay for colon carcinogenesis using dimethylhydrazine in Wistar rats. Braz J Med Biol Res. 2002; 35(3):351-5. doi:

1590/S0100-879X2002000300010.

Bird RP. Observation and quantification of aberrant crypts in the murine colon treated with a colon carcinogen: preliminary findings. Cancer Lett. 1987; 37(2):147-51.

Portugal LR, Fernandes LR, Cesar GC, Santiago HC, Oliveira DR, Silva NM, et al. Infection with Toxoplasma gondii increases atherosclerotic lesion in ApoE-deficient mice. Infect Immun. 2004; 72(6):3571-6. doi: 10.1128/IAI.72.6.3571-3576.2004

Hur K, Kim JR, Yoon BI, Lee JK, Choi JH, Oh GT, et al. Overexpression of cyclin D1 and cyclin E in 1,2-dimethylhydrazine dihydrochloride-induced rat colon carcinogenesis. J Vet Sci. 2000; 1(2): 121-6.

Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957; 226(1):497-509.

Hartman L, Lago RC. Rapid preparation of fatty acid methyl esters from lipids. Lab Pract. 1973; 22(6):475-6.

Tangerman A, Nagengast FM. A gas chromatographic analysis of fecal short-chain fatty acids, using the direct injection method. Anal Biochem. 1996; 236(8):1-8. doi: 10.1006/abio.1996.0123.

Perrin P, Pierre F, Patry Y, Champ M, Berreur M, Pradal G, et al. Only fibres promotiong a stable butyrate producing colonic ecosystem decrease the rate of aberrant crypt foci in rats. Gut. 2001; 48(1): 53-61. doi: 10.1136/gut.48.1.53.

Freeman HJ. Effect of differing concentrations of sodium butyrate on 1,2-dimethylhydrazineinduced rat intestinal neoplasia. Gastroenterology.1986; 91(3):596-602.

Dang J, Wang Y, Doe WF. Sodium butyrate inhibits expression of urokinase and its receptor mRNAs at both transcription and pos-transcription levels in colon cancer cells. FEBS Lett. 1995; 359(2-3): 147-50. doi: 10.1016/0014-5793(95)00029-9

Siavoshian S, Segain JP, Kornprobst M, Bonnet C, Cherbut C, Galmiche JP, et al. Butyrate and trichostatin A on the proliferation/differentiation of human intestinal epithelial cells: induction of cyclin D3 and p21 expression. Gut. 2000; 46(4): 507-14. doi: 10.1136/gut.46.4.507.

Douillard JY, Bennouna J, Vavasseur F, DeporteFety R, Thomare P, Giacalone F, et al. Phase I trial of interleukin-2 and high-dose arginine butyrate in metastatic colorectal cancer. Cancer Immunol Immunother. 2000; 49(1):56-61.

Edelman MJ, Bauer K, Khanwani S, Tait N, Trepel J, Karp J, et al. Clinical and pharmacologic study of tributyrin: an oral butyrate prodrug. Cancer Chemother Pharmacol. 2003; 51(5):439-44. doi: 10.1007/s00280-003-0580-5.

Turner ND, Zhang J, Davidson LA, Lupton JR, Chapkin RS. Oncogenic ras alters sensitivity of mouse colonocytes to butyrate and fatty acid mediated growth arrest and apoptosis. Cancer Lett. 2002; 186(1):29-35. doi: 10.1016/S0304-3835(02)00325-7.

Otori K, Sugiyama K, Fukushima S, Esumi H. Expression of the cyclin D1 gene in rat colorectal aberrant crypt foci and tumors induced by azoximethane. Cancer Lett. 1999; 140(1):99-104. doi: 10.1016/S0304-3835(99)00058-0.

Siavoshian S, Blottière HM, Cherbut C, Galmiche JP. Butyrate stimulates cyclin D and p21 and inhibits cyclin-dependent kinase 2 expression in HT-29 colonic epithelial cells. Biochem Biophys Res Comm. 1997; 232(1):169-72. doi: 10.1006/bbrc.1997.6255.

Archer SY, Meng S, Shei A, Hodin RA. p21WAF1 is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc Natl Acad Sci USA. 1998; 95(12):6791-6.

Field CJ, Angel A, Clandinin MT. Relationship of diet to the fatty acid composition of human adipose tissue structural and stored lipids. Am J Clin Nutr. 1985; 42(66):1206-20.

Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev. 2001; 81(3):1031-64.

Downloads

Published

2023-08-31

How to Cite

Gouveia PELUZIO, M. do C. ., Boroni MOREIRA, A. P., Campelo de QUEIROZ, I., Ganns Chaves DIAS, C. M. ., Castro FRANCESCHINI, S. do C. ., ALVAREZ-LEITE, J. I., … SABARENSE, C. M. . (2023). Oral administration of sodium butyrate reduces chemically-induced preneoplastic lesions in experimental carcinogenesis. Brazilian Journal of Nutrition, 22(5). Retrieved from https://periodicos.puc-campinas.edu.br/nutricao/article/view/9523

Issue

Section

ORIGINAL ARTICLE