Efeito do óleo de semente de uva prensado a frio nos marcadores bioquímicos e perfil inflamatório de ratos

Autores

  • Fernanda Branco SHINAGAWA Universidade de São Paulo
  • Fernanda Carvalho de SANTANA Universidade de São Paulo
  • Jorge MANCINI-FILHO Universidade de São Paulo

Resumo

Objetivo
O objetivo deste trabalho foi avaliar o efeito do consumo crônico do óleo de semente de uva, obtido do mercado brasileiro, nos marcadores bioquímicos e inflamatórios de ratos saudáveis.

Métodos
Ratos Wistar, recém-desmamados e saudáveis, receberam por 65 dias óleo de semente de uva e soja em duas concentrações (3 e 6 mL/kg de peso corporal). Os parâmetros avaliados foram a ingestão alimentar, peso corporal e dos tecidos hepático, cerebral e adiposo retroperitonial; neste último, foi ainda realizado o perfil de ácidos graxos. A análise dos parâmetros bioquímicos, peroxidação lipídica e perfil inflamatório através da quantificação das citocinas TNF-α, IL-10 e IL-6 foi realizada no soro.

Resultados
O óleo de semente de uva, independentemente da dose administrada, promoveu maior acúmulo de gordura no tecido hepático e aumento nos níveis de peroxidação lipídica do soro. Verificou-se que, quando consumido na maior dose, houve maior incorporação do ácido graxo linoleico no tecido adiposo retroperitonial. Modificações nos parâmetros bioquímicos e inflamatórios séricos não foram observadas.

Conclusão
O consumo de óleo de semente de uva não provocou alterações metabólicas significantes em nenhuma das doses administradas ainda que se tenha observado uma elevação nos níveis de peroxidação lipídica sérica. 

Referências

Dannenberger D, Nuernberg, G, Renne U, Nuernberg K, Langhammer M, Huber K, et al. High-fat diets rich in ω-3 or ω-6 polyunsaturated fatty acid have distinct effects on lipid profiles and lipid peroxidation in mice selected for either high body weight or leaness. Nutrition. 2013; 29(5):765-71. http://dx.doi.org/10.1016/j.nut.2012.10.010

Alvheim AR, Torstensen BE, Lin YH, Lillefosse, HH, Lock EJ, Madsen L, et al. Dietary linoleic acid elevates endogenous 2-arachidonoylglycerol and anandamide in Atlantic salmon (Salmo salar L.) and mice, and induces weight gain and inflammation in mice. J Br Nutr. 2013; 109(8):1508-17. http:// dx.doi.org/10.1017/S0007114512003364

Patterson E, Wall R, Fitzgerald GF, Ross RP, Stanton C. Health implications of high dietary omega-6 polynsaturated fatty acids. J Nutr Metabol. 2012; 2012(1):1-16. http://dx.doi.org/10.1155/2012/53 9426

Williams C, Buttriss J. Health benefits of Polyunsaturated Fatty Acids (PUFAs). Improving the fat content of foods. Boca Raton: CRC Press; 2006.

Covas MI, Konstantinidou V, Fitó M. Olive oil and cardiovascular health. J Cardiovascular Pharmacol. 2009; 54(6):477-82. http://dx.doi.org/10.1097/FJC. 0b013e3181c5e7fd

Asadi F, Shahriari A, Pourkabir M, MacLaren R. Short and long-term effect of corn oil on serum lipid and lipoprotein and visceral abdominal fat pad parameters of rats. J Food Lipids. 2008; 15(1):68-80. http:// dx.doi.org/10.1111/j.1745-4522.2007.00103.x

Asadi F, Shahriari A, Charhardah-cheric M. Effect of long-term optional ingestion of canola oil, grapeseed oil, corn oil and yogurt butter on serum, muscle and liver cholesterol status in rats. Food Chem Toxicol. 2010; 48(8-9):2454-57. http://dx. doi.org/10.1016/j.fct.2010.06.012

Fernandes L, Casal S, Cruz, R, Pereira JA, Ramalhos E. Seed oils of ten traditional Portuguese grape varieties with interesting chemical and antioxidant properties. Food Res Int. 2013; 50(1):161-66. http:// dx.doi.org/10.1016/j.foodres.2012.09.039

American Oil Chemists’ Society. Official methods and recommended practices of the American Oil Chemists’ Society. 5th ed. Champaign: AOCS; 2004.

American Oil Chemists’ Society. Association of official analytical chemists. Official methods of analysis, Arlington, Official Method. Champaign: AOCS; 2002.

Houde VP, Brûlé S, Festuccia WT, Blanchard PG, Bellmann K, Deshaies Y, et al. Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes. 2010; 59(6):1338-48. http://dx.doi.org/10.2337/db09-1324

Fukuyama N, Homma K, Wakana N, Kudo K, Suyama A, Ohazama H, et al. Validation of the Friedewald equation for evaluation of plasma LDL cholesterol. J Clin Biochem Nutr. 2008; 43(1):1-5. http://dx.doi.org/10.3164/jcbn.2008036

Ohkawa H, Ohishi N, Yaoi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979; 95(2):351-58. http:// dx.doi.org/10.1016/0003-2697(79)90738-3

Box GEP, Cox DR. An analysis of transformations. J Royal Statistical Soc. 1964; 26(2):211-52. 15. Crews C, Hough P, Godward J, Brereton P, Lees M, Guiet S, et al. Quantitation of the main constituents of some authentic grape-seed oils of different origin. J Agricul Food Chem. 2006; 54(17):6261-65. http://dx.doi.org/10.1021/jf060338y

Rockenbach II, Rodrigues E, Gonzaga LV, Fett R. Fatty acid composition of grape (Vitis vinifera L. and Vitis labrusca L.) seed oil. Braz J Food Technol. 2010; III SSA:23-6.

Codex alimentarius. Codex standart for named vegetable oils. Codex STAN 210-1999. 2001 [cited 2013 Dec 15]. Available from: http://www.codex alimentarius.org/input/download/standards/336/ CXS_210e.pdf

Hariri N, Thibault L. High-fat diet-induced obesity in animal models. Nutr Res Rev. 2010; 23(2):270-99. http://dx.doi.org/10.1017/S0954422410000168

Radcliffe JD, King CC, Czajka-Narins DM, Imrhan V. Serum and liver lipids in rats fed diets containing corn oil, cottonseed oil, or a mixture of corn and cottonseed oils. Plant Foods Human Nutr. 2001; 56(1):51-60. http://dx.doi.org/10.1023/A:1008 189503099

Hosomi R, Fukunaga K, Arai H, Kanda S, Nishiyama T, Yoshida M. Effect of combination of dietary fish protein and fish oil on lipid metabolism in rats. J Food Sci Technol. 2013; 50(2):266-274. http://dx. doi.org/10.1007/s13197-011-0343-y

Kawabata T, Shimoda K, Domon M, Hagiwara C, Takiwama M, Kagawa Y. Influences of stearidonic acid-enriched soybean oil on the blood and organ biochemical parameters in rats. Prostaglandins, Leukotrienes and Essential Fatty Acids. 2013; 88(2):179-84. http://dx.doi.org/10.1016/j.plefa. 2012.11.004

Tsuduki T, Honma T, Nakagawa K, Ikeda I. Miyazawa T. Long-term intake of fish oil increases oxidative stress and decreases lifespan in senescence accelerated mice. Nutrition. 2011; 27(3):334-37. http://dx.doi.org/10.1016/j.nut.2010.05.017

Carver JD, Benford VJ, Han B, Cantor AB. The relationship between age and the fatty acid composition of cerebral cortex and erythrocytes in human subjects. Brain Res Bull. 2001; 56(2):79-85. http://dx.doi.org/10.1016/S0361-9230(01)00551-2

Curi R, Pompéia C, Miyasaka CK, Procópio J. Enten dendo a gordura: os ácidos graxos. Barueri: Manole; 2002.

Kim DJ, Jeon G, Sung J, Oh SK, Hong HC, Lee J. Effect of grape seed oil supplementation on plasma lipid profile in rats. Food Sci Biotechnol. 2010; 19(1):249-52. http://dx.doi.org/10.1007/s10068-0 10-0035-9

Riccardi G, Giacco R, Rivellese AA. Review: Dietary fat, insulin sensitivity and the metabolic syndrome. Clin Nutr. 2004; 23(4):447-56. http://dx.doi.org/ 10.1016/j.clnu.2004.02.006

Buettner R, Parhofer KG, Woenckhaus M, Wrede CE, Kunz-schughart LA, Scholmerich J, et al. Defining high-fat-diet rat models: Metabolic and molecular effects of different fat types. J Molecular Endocrinol. 2006; 36(3):485-501. http://dx.doi.org/ 10.1677/jme.1.01909

Li G, Singh A, Liu Y, Sunderland B, Li D. Comparative effects of sandalwood seed oil on fatty acid profiles and inflammatory factors in rats. Lipids. 2013; 48(2):105-13. http://dx.doi.org/10.1007/s11745-0 12-3752-4

Downloads

Publicado

31-03-2023

Como Citar

Branco SHINAGAWA, F. ., Carvalho de SANTANA, F. ., & MANCINI-FILHO, J. (2023). Efeito do óleo de semente de uva prensado a frio nos marcadores bioquímicos e perfil inflamatório de ratos. Revista De Nutrição, 28(1). Recuperado de https://periodicos.puc-campinas.edu.br/nutricao/article/view/8193

Edição

Seção

ARTIGOS ORIGINAIS