Modification of Mediterranean Diet Pyramid from an Island’s perspective

Autores/as

Palabras clave:

Cyprus, traditional foods, Food pyramid, Mediterranean diet

Resumen

Objective

The present study aimed to determine traditional and local food consumption and adherence to the Mediterranean diet in Cyprus. And also, aimed to improve their adherence to the Mediterranean diet and traditional and local food consumption. From this point, this current study aimed to revise the Cyprus Mediterranean Diet Pyramid, based on the Current Mediterranean Diet Pyramid.

Methods

The sample size was calculated as a minimum of 386 according to a 95.0% confidence interval, and a 5.0% error. This study was conducted online between November 2020-April 2021 in Cyprus. All volunteers were invited to this study on the national public internet platforms. Participant´s adherence to the Mediterranean diet was determined by the Mediterranean Diet Adherence Screener. Traditional and local food consumption frequencies were determined by a Food Frequency Questionnaire. A novel Cyprus Mediterranean Diet Pyramid was developed with traditional and local food items for Cyprus. The modification was also aimed to safeguard planet health, to increase traditional food consumption and adherence to the Mediterranean diet.

Results

1,007 adults (78.0% native islanders/Cypriots) participated voluntarily in the current study. The mean Mediterranean Diet Adherence Screener score was 7.55±2.30 points and only 34.4% had high adherence to the Mediterranean diet. According to their responses, there was a need to increase use of olive oil, vegetables, fruits, fish, and red wine consumption and to decrease red meat and dessert consumption. According to responses to the Mediterranean Diet Adherence Screener and their traditional/local food consumption frequencies an up-to-date Cyprus Mediterranean Diet Pyramid was done hence a national food pyramid for Cyprus. Commonly consumed traditional and local foods were added to the pyramid to facilitate increased adaptation of the Mediterranean diet in the general population. Adequately consumed foods were added to make it more region-specific and rarely consumed foods were added to help to increase consumption.

Conclusion

This modification is believed to be instrumental to increase Mediterranean diet adaptation, traditional/local food consumption and decrease the impact of nutrition on the planet´s health. And also, this modification can shed light on the development of the other traditional food pyramids.

Citas

Moro E. The Mediterranean diet from Ancel Keys to the UNESCO cultural heritage: a pattern of sustainable development between myth and reality. Procedia Soc. 2016;223(2016):655-61. https://doi.org/10.1016/j.sbspro.2016.05.380

Trichopoulou A, Martínez-Gonzάlez MA, Tong TY, Forouhi NG, Khandelwal S, Prabhakaran D, et al. Definitions and potential health benefits of the Mediterranean diet: views from experts around the world. BMC Medicine. 2014;12:1-16. https://doi.org/10.1186/1741-7015-12-112

D’Innocenzo S, Biagi C, Lanari M. Obesity and the Mediterranean diet: a review of evidence of the role and sustainability of the Mediterranean diet. Nutrients. 2019;11(6):1-25. https://doi.org/10.3390/nu11061306

Schwingshackl L, Morze J, Hoffmann G. Mediterranean diet and health status: active ingredients and pharmacological mechanisms. Br J Pharmacol. 2020;177(6):1241-57. https://doi.org/10.1111/bph.14778

Romagnolo DF, Selmin OI. Mediterranean diet and prevention of chronic diseases. Nutr Today. 2017;52(5):208-22. https://doi.org/10.1097/NT.0000000000000228

Lᾰcᾰtuşu CM, Grigorescu ED, Floria M, Onofriescu A, Mihai BM. The Mediterranean diet: from an environment-driven food culture to an emerging medical prescription. J Environ Public Health. 2019;16(6):1-16. https://doi. org/10.3390/ijerph16060942

Bach-Faig, A, Berry EM, Lairon D, Reguant J, Trichopoulou A, Dernini S, et al. Mediterranean diet pyramid today: science and cultural updates. Public Health Nutr. 2011;14(12A):2274-84. https://doi.org/10.1017/S1368980011002515

De Lorgeril M, Salen P, Rabaues M. New and traditional foods in a modernized Mediterranean diet model. Eur J Clin Nutr. 2019;72(1):47-54. https://doi.org/10.1038/s41430-018-0308-6

Sidiq FF, Coles D, Hubbard C, B Clark, Frewer LJ. The role of traditional diets in promoting food security for indigenous peoples in low-and middle-income countries: a systematic review. Conf Ser Earth Environ Sci. 2022;978:1-21. https:// doi.org/10.1088/1755-1315/978/1/012001

Adhikari L, Tuladhar S, Hussain A, Aryal K. Are traditional food crops really ‘future smart foods?’ A sustainability perspective. Sustainability. 2019;11(19):1-16. https://doi.org/10.3390/su11195236

Albayrak M, Gunes E. Traditional foods: Interaction between local and global foods in Turkey. Afr J Bus Manag. 2010;4(4):555-61. https://doi.org/10.5897/AJBM.9000658

Berry EM. Sustainable food systems and the Mediterranean diet. Nutrients. 2019;11(9):1-9. https://doi.org/10.3390/ nu11092229

Galli A, Iha K, Halle M, Bilali HE, Grunewald N, Eaton D, et al. Mediterranean countries’ food consumption and sourcing patterns: an ecological footprint viewpoint. Sci Total Environ. 2017;578(2017):383-91. https://doi. org/10.1016/j.scitotenv.2016.10.191

Markou M, Stavri G. Agricultural situation report-Cyprus. Nicosia: Agricultural Research Institute; 2006 [cited 2022 Oct 5]. Available from: https://www.researchgate.net/publication/257680418_Agricultural_Situation_Report_Cyprus

Gokcebag M, Ozden O. Home Garden herbs and medicinal plants of Lefke, Cyprus. Indian J Pharm Educ. 2017;51(3):441-4. https://doi.org/10.5530/ijper.51.3s.64

Papademas P, Robinson RK. Halloumi cheese: the product and its characteristics. Int J Dairy Technol. 1998;51(3):98-103. https://doi.org/10.1111/j.1471-0307.1998.tb02646.x

Vrontis D, Thrassou A. The renaissance of Commandaria: a strategic branding prescriptive analysis. JGBA. 2011;4(4):302-16. https://doi.org/10.5848/APBJ.2012.00013

Ankut Z. A Study on the Comparison of Turkish and Greek Cypriot Cuisine [thesis]. Cyprus: Near East University; 2007.

Karousou R, Deirmentzoglou S. The herbal market of Cyprus: traditional links and cultural exchanges. J Ethnopharmacol. 2011;133(2011):191-203. https://doi.org/10.1016/j.jep.2010.09.034

Martίnez-Gonzάlez MA, Fernάndez-Jarne E, Serrano-Martίnez M, Wright M, Gomez-Gracia E. Development of a short dietary intake questionnaire for the quantitative estimation of adherence to a cardioprotective Mediterranean diet. Eur J Clin Nutr. 2004;58(11):1150-1552. https://doi.org/10.1038/sj.ejcn.1602004

Hernάndez-Galiot A, Goῆi I. Adherence to the Mediterranean diet pattern, cognitive status and depressive symptoms in an elderly non-institutionalized population. Nutr Hosp. 2017;34(2):338-44. https://doi.org/10.20960/nh.360

Hebestreit K, Yahiaoui-Doktor M, Engel C, Vetter W, Siniatchkin M, Erickson N, et al. Validation of the German version of the Mediterranean Diet Adherence Screener (MEDAS) questionnaire. BMC Cancer. 2017;17(1):1-10. https://doi.org/10.1186/s12885-017-3337-y

Garcίa-Conesa MT, Philippou E, Pafilas C, Massaro M, Quarta S, Andrade V, et al. Exploring the validity of the 14- item Mediterranean Diet Adherence Screener (MEDAS): a cross-national study in seven European countries around the Mediterranean region. Nutrients. 2020;12(10):1-17. https://doi.org/10.3390/nu12102960

Papadaki A, Johnson L, Toumpakari Z, England C, Rai M, Toms S, et al. Validation of the English version of the 14-Item Mediterranean Diet Adherence Screener of the PREDIMED study, in people at high cardiovascular risk in the UK. Nutrients. 2018;10(2):1-16. https://doi.org/10.3390/nu10020138

Pehlivanoglu EFO, Balcioglu H, Unluoglu I. Turkish validation and reliability of Mediterranean Diet Adherence Screener. OJM. 2020;42(2):160-4. https://doi.org/10.20515/504188

Suzal IG. Cyprus Foods. 1st ed. Cyprus: Our Books Publisher; 2009.

Andrade V, Jorge J, Garcίa-Conesa MT, Philippou E, Massaro M, Chervenkov M, et al. Mediterranean diet adherence and subjective well-being in a sample of Portuguese adults. Nutrients. 2020;12(12):1-15. https://doi.org/10.3390/ nu12123837

Muros JJ, Zabala M. Differences in Mediterranean diet adherence between cyclists and triathletes in a sample of Spanish athletes. Nutrients. 2018;10(10):1-11. https://doi.org/10.3390/nu10101480

Schwarzer R, Fleig L, Warner LM, Gholami M, Serra-Majem L, Ngo J, et al. Who benefits from a dietary online intervention? Evidence from Italy, Spain and Greece. Public Health Nutr. 2016; 20(5):938-47. https://doi.org/10.1017/ S1368980016002913

Gonder M, Akbulut G. Current Mediterranean diet and potential health effects: review. Turk Klin J Med Sci. 2017;2(2):110-20. https://doi.org/10.5336/healthsci.2016-51565

Phull S. The Mediterranean diet: scio-cultural relevance for contemporary health promotion. Open Public Health J. 2015;8:35-40. https://doi.org/10.2174/1874944520150601E001

Scott TL, Masser BM, Pachana NA. Exploring the health and wellbeing benefits of gardening for older adults. Aging Soc. 2014;35(10):2176-200. https://doi.org/10.1017/S0144686X14000865

Haynes E, Brown CR, Wou C, Vogliano C, Guell C, Unwin N. Health and other impacts of community food production in small island developing states: a systematic scopinf review. Rev Panam Salud Publica. 2018;42:1-9. https://doi. org/10.26633/RPSP.2018.176

Hartig T, Mitchell R, Vries S, Frumkin H. Nature and Health. Annu Rev Public Health. 2014;35(2014):207-28. https:// doi.org/10.1146/annurev-publhealth-032013-182443

Tapsell LC, Sullivan DR, Cobiac L, Fenech M. Health benefits of herbs and spices: the past, the present, the future. Med J Aust. 2006;185(4):1-24. https://doi.org/10.5694/j.1326-5377.2006.tb00548.x

Adebo HO, Ahoton LE, Quenum FJB, Adoukonou-Sagbadja H, Bello DO, Chrysostome CAAM. Ethnobotanical knowledge of jute (Corchorus olitorius L.) in Benin. European J Med Plants. 2018;26(1):1-11. https://doi.org/10.9734/ EJMP/2018/43897

Park HY, Oh MJ, Kim Y, Choi I. Immunomodulatory activities of Corchorus olitorius leaf extract: Beneficial effects in macrophage and NK cell activation immunosuppressed mice. J Funct Foods. 2018;46(2018):220-6. https://doi. org/10.1016/j.jff.2018.05.005

Ozdenefe MS, Muhammed A, Suer K, Guler E, Aysun H, Takci M. Determination of antimicrobial activity of Corchorus olitorius leaf extracts. Cyprus J Med Sci. 2018;3(3):159-63. https://doi.org/10.5152/cjms.2018.623

Benso B, Franchin M, Massarioli AP, Paschoal JAR, Alencar SM, Franco GCN, et al. Anti-inflammatory, anti-osteoclastogenic and antioxidant effects of Malva sylvestris extract and farctions: in vitro and in vivo studies. Plos One. 2016;11(9):1-19. https://doi.org/10.1371/journal.pone.0162728

Elsayed SM, Nazif NM, Hassan RA, Hassanein HD, Elkholy YM, Gomaa NS, et al. Chemical and biological constituents from the leaf extracts of the wild artichoke (Cynara cornigera). Int J of Pharm. 2012;4(5):396-400.

Muszyǹska E, Labudda M, Kral A. Ecotype-specific pathways of reactive oxygen species deactivation in facultative metallophyte Silene vulgaris (Moench) garcke treated with heavy metals. Antioxidants. 2020;9(2):1-30. https://doi. org/10.3390/antiox9020102

Erel SB, Demir S, Nalbantsoy A, Ballar P, Khan S, Yavasoglu NUK, et al. Bioactivity screening of five Centaurea species and in vivo anti-inflammatory activity of C. athoa. Pharm Biol. 2014;52(6):775-81. https://doi.org/10.3109/138802 09.2013.868493

Zayed A, Serag A, Farag MA. Cynara cardunculus L.: uutgoing and potential trends of phytochemical, industrial, nutritive and medicinal merits. J Funct Foods. 2020;69(2020):1-16. https://doi.org/10.1016/j.jff.2020.103937

Kaska A, Deniz N, Mammadov R. Biological activities of wild asparagus (Asaparagus acutifolius L.). Int J Second. 2018;5(3):243-51. https://doi.org/10.21448/ijsm.458827

Boscaro V, Boffa L, Binello A, Amisano G, Fornasero S, Cravotto G, et al. Antiproliferative, proapoptotic, antioxidant and antimicrobial effects of Sinapis nigra L. and Sinapis alba L. extracts. Molecules. 2018;23(11):1-18. https://doi. org/10.3390/molecules23113004

Azab A, Nassar A, Kaplanski J, Mahajneh R, Agam G, Azab AN. Effects of aqueous extract of Notobasis syriaca on lipopolysaccharide-induced inflammation in rats. Asian Pac J Trop Med. 2018;11(1):48-52. https://doi. org/10.4103/1995-7645.223533

Li Y, Zhang JJ, Xu DP, Zhou T, Zhou Y, Li S, et al. Bioactivities and health benefits of wild fruits. Int J Mol Sci. 2016;17(8):1-27. https://doi.org/10.3390/ijms17081258

Ministry of Agriculture, Natural Resources and Environment. Annual Report of the Ministry of Agriculture, Natural Resources and Environment for the year 2011. Nicosia: Ministry; 2012 [cited 2022 Oct 5]. Available from: https:// moa.gov.cy/mediastuff/uploads/2019/03/Annual-Rep-2011-english.pdf

Zorpas AA, Pociovᾰlışteanu DM, Inglezakis VJ, Voukalli I. Total quality management system (TQMS) in small winery and bakery in Cyprus: a case study. An Univ “Constantin Brâncuşi” Târgu Jiu Ser Whitehead. 2012;2:17-26. https:// www.researchgate.net/publication/261365725

Tsafrakidou P, Michaelidou AM, Biliaderis CG. Fermented cereal-based products: Nutritional aspects, possible impact on gut microbiota and health implications. Foods. 2020;9(6):1-25. https://doi.org/10.3390/foods9060734

Ozturk B, Celik F, Celik Y, Kabaran S, Ziver T. To determine the occurrence of Aflatoxin M1 (AFM1) in samples of Cyprus traditional cheese (Halloumi): a cross-sectional study. Kafkas Uni Vet Fak Derg. 2014;20(5):773-8. https://doi. org/10.9775/kvfd.2014.11108

Dahlan HA, Sani NA. The interaction effect of mixing starter cultures on homemade natural yoghurt’s pH and viscosity. Int J Food Sci. 2017;6(2):152-8. https://doi.org/10.7455/ijfs/6.2.2017.a3

Yavuz DO, Ozalp Y, Tuncay B, Altanlar N, Simsek D. Antimicrobial effect of essential oil of Thymus capitatus from Northern Cyprus and its gargle preformulation. J Pharm Res Int. 2020;32(5):60-6. https://doi.org/10.9734/JPRI/2020/ v32i530437

Syed QA, Akram M, Shukat R. Nutritional and therapeutic importance of the pumpkin seeds. Biomed J Sci Tech Res. 2019;21(2):15798-803. https://doi.org/10.26717/BJSTR.2019.21.003586

Pereira PR, Aquino Mattos ЀB, Fernandes Corrè ACNT, Vericimo MA, Flosi Paschoalin VM. Anticancer and immunomodulatory benefits of Taro (Colocasia esculanta) corms, an underexploited tuber crop. Int J Mol Sci. 2021;22(1):1-32. https://doi.org/10.3390/ijms22010265

Akbora HD. General status and growth potential of fishers sector in Northern Cyprus. Nat Eng Sciences. 2020;5(2):73-81. https://doi.org/10.28978/nesciences.756745

Oddo VM, Maehara M, Izwardy D, Sugihantono A, Ali PB, Rah JH. Risk factors for nutrition-related chronic disease among adults in Indonesia. Plos One. 2019;14(8):1-22. https://doi.org/10.1371/journal.pone.0221927

Snopek L, Mlcek J, Sochorova L, Baron M, Hlavacova I, Jurikova T, et al. Contribution of red wine consumption to human health problem. Molecules. 2018;23(7):1-16. https://doi.org/10.3390/molecules23071684

Petrakis P, Touris I, Liouni M, Zervou M, Kyrikou I, Kokkinofta R, et al. Authenticity of the traditional Cypriot spirit ‘Zivania’ on the basis of 1H NMR spectroscopy diagnostic parameters and statistical analysis. J Agric Food Chem. 2005;53(13):5293-303. https://doi.org/10.1021/jf0495800

Descargas

Publicado

2023-06-07

Cómo citar

DAYI, T., OZTURK, M., OZGOREN, M., & ONIZ, A. (2023). Modification of Mediterranean Diet Pyramid from an Island’s perspective. Revista De Nutrição, 35, 1–13. Recuperado a partir de https://periodicos.puc-campinas.edu.br/nutricao/article/view/8663

Número

Sección

ARTIGOS ORIGINAIS