Efecto de la administración subcrónica de glucosamina oral en la regulación del peso corporal, glucemia y dislipidemias provocada por una dieta hipercalórica en rata Wistar

Autores/as

  • Cornelio BARRIENTOS ALVARADO Instituto Politécnico Nacional
  • Jorge SÁNCHEZ VÁZQUEZ Escuela Superior de Enfermería y Obstétrica
  • María Atanasia Silvia CÁRDENAS OSCOY Escuela Superior de Enfermería y Obstétrica
  • Osvaldo GARRIDO ACOSTA Instituto Politécnico Nacional
  • Liliana ANGUIANO ROBLEDO Instituto Politécnico Nacional

Palabras clave:

Glucemia, Glucosamina, HDL-colesterol, Peso corporal

Resumen

Objetivo
Este estudio evaluó el efecto de la glucosamina oral en el sobrepeso y dislipidemia provocada por una dieta hipercalórica en ratas.

Métodos
En 4 grupos de ratas Wistar: alimentados con dieta comercial para roedores y agua de beber sin grupo de control y con glucosamina (500 mg/kg-1 por día) grupo glucosamina y con dieta hipercalórica enriquecida al 24% (g/g) compuesta por manteca de cerdo y agua de beber sin grupo hipercalórico y con glucosamina grupo hipercalórico + grupo glucosamina, durante 22 semanas, se evaluaron el peso corporal, grasa abdominal, niveles de glucemia, triglicéridos, colesterol total y lipoproteínas de alta densidad en suero.

Resultados
Se observó un aumento del peso corporal y glucemia en suero con dislipidemias en el grupo con dieta hipercalórica grupo hipercalórico versus grupo de controle (p<0.001); al administrarse glucosamina para esta misma dieta grupo hipercalórico + grupo glucosamina se minimizaron los efectos presentados, disminuyendo la cantidad de grasa abdominal y los niveles del perfil lípido en suero (p>0.05) y regulándose el peso corporal, las lipoproteínas de alta densidad y la glucemia basal (p<0.05).

Conclusion
La glucosamina reguló el peso corporal y la glucemia en sangre y minimizó las dislipidemias provocadas por la dieta hipercalórica, favoreciendo el aumento de colesterol lipoproteínas de alta densidad en las ratas. No afectó el peso corporal y el metabolismo lipídico cuando se administró con dieta comercial. 

Citas

Siriwardhana N, Kalupahana NS, Cekanova M, Lemieux M, Greer B, et al. Modulation of adipose tissue inflammation by bioactive food compounds. J Nutr Biochem. 2013; 24(4):613-23. doi: 10.1016/j.jnutbio.2012.12.013

Carr MC, Brunzell JD. Abdominal obesity and dyslipidemia in the metabolic syndrome: Importance of type 2 diabetes and familialcombined hyperlipidemia in coronary artery disease risk. J Clin Endocrinol Metab. 2004; 89(6):2601-7. doi: 10.1210/jc.2004-0432

Brunzell JD, Ayyobi AF. Dyslipidemia in the metabolic syndrome and type 2 diabetes. Am J Med. 2003; 115(S8):S24-8. doi: 10.1016/j.amjmed.2003.08.011

Lemieux I, Pascot A, Couillard C, Lamarche B, Tchernof A, Almeras N, et al. Hypertriglyceridemic waist: A marker of the atherogenic metabolic triad (hyperinsulinemia; hyperapolipoprotein B; small, dense LDL) in men? Circulation. 2000; 102(2):179-84. doi: 10.1161/01.CIR.102.2.179

Aguilar SCA, Rojas R, Gómez PFJ, Valles V, Rios JM, Franco A, et al. High prevalence of metabolic syndrome in México. Arch Med Res. 2004; 35(1):76-81. doi: 10.1016/j.arcmed.2003.06.006

Kalupahana NS, Moustaid-Moussa N, Claycombe KJ. Immunity as a link between obesity and insulin resistance. Mol Aspects Med. 2012; 33(1):26-34. doi: 10.1016/j.mam.2011.10.011

Durrington P. Dyslipidaemia. Lancet. 2003; 362(9385):717-31. doi: 10.1016/S0140-6736(03) 14234-1

Wang S, Moustaid-Moussa N, Chen L, Mo H, Shastri A, Su R, et al. Novel insights of dietary polyphenols and obesity. J Nutr Biochem. 2014; 25(1):1-18. doi: 10.1016/j.jnutbio.2013.09.001

Velázquez MO, Rosas PM, Lara EA, Pastelín HG, Hernández C, Sánchez A, et al. Prevalencia e interrelación de enfermedades crónicas no transmisibles y factores de riesgo cardiovascular en México. Arch Cardiol Mex. 2003; 73(1):62-77.

Massiera F, Barbry P, Guesnet P, Joly A, Luquet S, Moreilhon-Brest C, et al. A Western-like fat diet is sufficient to induce a gradual enhancement in fat mass over generations. J Lipid Res. 2010; 51(8):2352-236. doi: 10.1194/jlr.M006866

Panchal SK, Brown L. Rodent models for metabolic syndrome research. J Biomed Biotechnol. 2011; 20011:351982. doi: 10.1155/2011/351982

Rolland V, Roseau S, Fromentin G, Nicolaidis S, Tomé D, Even PC. Body weight, body composition, and energy metabolism in lean and obese zucker rats fed soybean oil or butter. Am J Clin Nutr. 2002; 75(1):21-30.

Panchal SK, Poudyal H, Iyer A, Nazer R, Alam A, Diwan V, et al. High-carbohydrate, high-fat dietinduced metabolic syndrome and cardiovascular remodeling in rats. J Cardiovasc Pharmacol. 2011; 57(5):611-24. doi: 10.1097/FJC.0b013e3181feb90a

Lomba A, Milagro FI, Garcia-Diaz DF, Marti A, Campion J, Martinez JA. Obesity induced by a pairfed high fat sucrose diet: Methylation and expression pattern of genes related to energy homeostasis. Lipids Health Dis. 2010; 9:60. doi: 10.1186/1476-511X-9-60

Sever P, Dahlof B, Poulter N, Wedel H, Beevers G, Caulfield M, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial-Lipid Lowering Arm (ASCOT-LLA): A multicenter randomized trial. Lancet. 2003; 361(9364):1149-58. doi: 10.1016/S0140-673 6(03)12948-0

Kwiterovich PO. The metabolic pathways of highdensity lipoprotein, low-density lipoprotein, and triglycerides: A current review. Am J Cardiol. 2000; 86(12A):L5-10. doi: 10.1016/S0002-9149(00)01461-2

McAlindon TE, LaValley MP, Gulin JP, Felson DT. Glucosamine and chondroitin for treatment of osteoarthritis: A systematic quality assessment and meta-analysis. Jama. 2000; 283(11):1469-75. doi:10.1001/jama.283.11.1469

Bondiolotti G, Bareggi SR, Frega NG, Strabioli S, Cornelli U. Activity of two different polyglucosamines, L112 and FF45, on body weight in male rats. Eur J Pharmacol. 2007; 567(1-2):155-8.

Bondiolotti G, Cornelli U, Strabbioli RS, Frega NG, Cornelli M, Bareggi S. Effect of a polyglucosamine on the body weight of male rats: Mechanisms of action. Food Chem. 2011; 124(3):978-82. doi: 10.1016/j.foodchem.2010.07.039

Magrans CT, Wilborn C, Rasmussen C, Ferreira M, Greenwood L, Campbell B, et al. Effects of diet type and supplementation of glucosamine, chondroitin, and MSM on body composition, functional status, and markers of health in women with knee osteoarthritis initiating a resistance-based exercise and weight loss program. J Int Soc Sports Nutr. 2011; 8(1):8. doi: 10.1186/1550-2783-8-8

Lamiaa A, Barakat A. Hypolipidemic and antiatherogenic effects of dietary chitosan and wheat bran in high fat-high cholesterol fed rats. Aust J Basic Appl Sci. 2011; 5(10):30-7.

Muurling M, Mensink RP, Pijl H, Romijn JA, Havekes LM, Voshol PJ. A fish oil diet does not reverse insulin resistance despite decreased adipose tissue TNFalpha protein concentration in ApoE-3*Leiden mice. J Nutr. 2003; 133(11):3350-5.

Anderson JW, Nicolosi RJ, Borzelleca JF. Glucosamine effects in humans: A review of effects on glucose metabolism, side effects, safety considerations and efficacy. Food Chem Toxicol. 2005; 43(2):187-201. doi: 10.1016/j.fct. 2004.11.006

Keita H, Ramírez-San Juan E, Paniagua-Castro N, Garduño-Siciliano L, Quevedo L. The long-term ingestion of a diet high in extra virgin olive oil produces obesity and insulin resistance but protects endothelial function in rats: A preliminary study. Hady Diabetol Metab Synd. 2013; 5:53 doi: 10.1 186/1758-5996-5-53

Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinl Chem. 1972; 18(6):499-502.

Sánchez-Lasheras C, Könner AC, Brüning JC. Integrative neurobiology of energy homeostasisneurocircuits, signals and mediators. Front Neuroendocrinol. 2010; 31(1):4-15. doi: 10.1016/j. yfrne.2009.08.002

Laye MJ, Thyfault JP, Stump CS, Booth FW. Inactivity induces increases in abdominal fat. J Appl Physiol. 2007; 102(4):1341-7.

Fernández-Quintela A, Churruca I, Portillo MP. The role of dietary fat in adipose tissue metabolism. Public Health Nutr. 2007; 10(10A):1126-31.

Könner AC, Klöckener T, Brüning JC. Control of energy homeostasis by insulin and leptin: Targeting the arcuate nucleus and beyond. Physiol Behav. 2009; 97(5):632-8. doi: 10.1016/j.physbeh.2009.03.027

Marty N, Dallaporta M, Thorens B. Brain glucose sensing, counterregulation, and energy homeostasis. Physiology. 2007; 22:241-51.

Stein CJ, Colditz GA. The epidemic of obesity. J Clin Endocrinol Metab. 2004; 89(6):2522-5.

Hensrud DD. Diet and obesity. Curr Opin Gastroenterol. 2004; 20(2):119-24.

Stannard SR, Johnson NA. Insulin resistance and elevated triglyceride in muscle: More important for survival than thrifty genes? J Physiol. 2004. 554(Pt3):595-607. doi: 10.1113/jphysiol.2003.053926

Yu YH, Ginsberg HN. Adipocyte signaling and lipid homeostasis: Sequelae of insulin-resistant adipose tissue. Circ Res. 2005; 96(10):1042-52. doi: 10.1161/01.RES.0000165803.47776.38

Boden G. Obesity, insulin resistance and free fatty acids. Curr Opin Endocrinol Diabetes Obes. 2011; 18(2):139-43. doi: 10.1097/MED.0b013e3283444b09

Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006; 444(7121):840-6.

Arner P. Human fat cell lipolysis: Biochemistry, regulation and clinical role. Best Pract Res Clin Endocrinol Metab. 2005; 19(4):471-82. doi: 10.1016/j.beem.2005.07.004

Frayn KN. Obesity and metabolic disease: Is adipose tissue the culprit? Proc Nutr Soc. 2005; 64(1):7-13. doi: org/10.1079/PNS2004403

Lemieux I, Poirier P, Bergeron J, Alméras N, Lamarche B, Cantin B, et al. Hypertriglyceridemic waist: A useful screening phenotype in preventive cardiology? Can J Cardiol. 2007; 23(Suppl. B):23B-31B.

Fujimoto VY, Kane JP, Ishida BY, Bloom MS, Browne RW. High-density lipoprotein metabolism and the human embryo. Hum Reprod. 2010; 16(1):20-38. doi: 10.1093/humupd/dmp029

Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Jama. 2002; 285(2):2486-97. doi: 10.1001/jama.285.19.2486

Kong CS, Kim JA, Kim SK. Anti-obesity effect of sulfated glucosamine by AMPK signal pathway in 3T3-L1 adipocytes. Food Chem Toxicol. 2009; 47(10):2401-06. doi: 10.1016/j.fct.2009.06.010

Lechleitner M. Mitochondrial function role in insulin resistance and lipid metabolism. Acta Med Austriaca. 2004; 31(4):115-9.

Luo B, Parker GJ, Cooksey RC, Soesanto Y, Evans M, Jones D, et al. Chronic hexosamine flux stimulates fatty acid oxidation by activating AMP-activated protein kinase in adipocytes. J Biol Chem. 2007; 282(10):7172-80. doi: 10.1074/jbc.M607362200

Unger RH. Minireview: Weapons of lean body mass destruction: The role of ectopic lipids in the metabolic syndrome. Endocrinology. 2003; 144(12):5159-65. doi: 10.1210/en.2003-0870.5159

Lewis GF, Rader DJ. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res. 2005; 96(12):1221-32.

Descargas

Publicado

2023-04-18

Cómo citar

BARRIENTOS ALVARADO, C., SÁNCHEZ VÁZQUEZ, J. ., Silvia CÁRDENAS OSCOY, M. A. ., GARRIDO ACOSTA, O. ., & ANGUIANO ROBLEDO, L. . (2023). Efecto de la administración subcrónica de glucosamina oral en la regulación del peso corporal, glucemia y dislipidemias provocada por una dieta hipercalórica en rata Wistar. Revista De Nutrição, 27(6). Recuperado a partir de https://periodicos.puc-campinas.edu.br/nutricao/article/view/8362

Número

Sección

ARTIGOS ORIGINAIS