Lipid peroxidation biomarkers in atherosclerosis
Keywords:
Lipid peroxidation, Lipoprotein, LDL, AtherosclerosisAbstract
Atherosclerosis is characterized by a chronic inflammatory response in the arterial wall triggered by endothelial injury. Its etiology is associated with the oxidative modification of low density lipoprotein. The objective of this work is to present the main metabolites involved in the biochemical process of lipid peroxidation and discuss the advantages and disadvantages of the methods used to measure the lipid peroxidation biomarkers associated with atherosclerosis. Lipoprotein oxidation can be assessed by determining the products generated during lipid peroxidation, such as isoprostanes, lipid hydroperoxides, aldehydes, oxidized phospholipids and products of cholesterol oxidation. The susceptibility of low density lipoprotein particles to oxidation can be assessed in
vitro after induction of lipid peroxidation by oil-soluble or water-soluble azo initiators or more commonly by copper ions. On the other hand, low density lipoprotein modification by lipoxygenases and peroxidases or non-enzymatic oxidation increases the negative charge of these particles and may contribute to in vivo generation of a minimally oxidized low density lipoprotein subfraction called electronegative low density lipoprotein (low density lipoprotein). Plasma concentrations of these particles can be determined by liquid chromatography or immunoassays. Many methods can be used to assess lipid peroxidation biomarkers in vivo
and in vitro, however determination of the most suitable biomarker depends on a minute assessment of the advantages, disadvantages and particularities of each analysis, bearing in mind the objectives of the study that will be performed.
References
Stocker R, Keaney JF. Role of oxidative modifications in atherosclerosis. Physiol Rev. 2004; 84(4): 1381-478.
Hevonoja T, Pentikainen MO, Hyvonen MT, Kovanen PT, Ala-Korpela M. Structure of low density lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL. Biochim Biophys Acta. 2000; 1488(3): 189-210.
Chang YH, Adballa DS, Sevanian A. Characterization of cholesterol oxidation products formed by oxidative modification of low density lipoprotein. Free Radic Biol Med. 1997; 23(2): 202-14.
Esterbauer H, Gebicki J, Puhl H, Jürgens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radical Biol Med. 1992; 13(4):341-90.
Lima ES, Abdalla DSP. Peroxidação lipídica: mecanismos e avaliação em amostras biológicas. Rev Bras Ciênc Farm. 2001; 37(3):293-303.
Montuschi P, Barnes P, Roberts LJ. Insights into oxidative stress: the isoprostanes. Curr Med Chem. 2007; 14(6):703-17.
Polidori MC, Praticó D, Parente B, Mariani E, Cecchetti R, Yao Y, et al. Elevated lipid peroxidation biomarkers and low antioxidant status in atherosclerotic patients with increased carotid or iliofemoral intima media thickness. J Investig Med. 2007; 55(4):163-7.
Schwedhelm E, Böger RH. Application of gas chromatography-mass spectrometry for analysis of isoprostanes: their role in cardiovascular disease. Clin Chem Lab Med. 2003; 41(12):1552-61.
Miyazawa T, Fujimoto K, Suzuki T, Yasuda K. Determination of phospholipid hidroperoxides using luminol chemiluminescense: highperformance liquid chromatography. Methods Enzymol. 1994; 233(1):324-32.
Moore K, Roberts LJ. Measurement of lipid peroxidation. Free Radic Res. 1998; 28(6):659-71.
Holvoet P, Perez G, Zhao Z, Brouwers E, Bernar H, Collen D. Malondialdehyde-modified low density lipoprotein in patients with atherosclerotic disease. J Clin Invest. 1995; 95(6):2611-9.
Kotur-Stevuljevic J, Memon L, Stefanovic A, Spasic S, Spasojevic-Kalimanovska V, Bogavac-Stanojevic N, et al. Correlation of oxidative stress parameters and inflammatory markers in coronary artery disease patients. Clin Biochem. 2007; 40(3-4): 181-7.
Dursun B, Dursun E, Suleymanlar G, Ozben B, Capraz I, Apaydin A, et al. Carotid artery intimamedia thickness correlates with oxidative stress in chronic haemodialysis patients with accelerated atherosclerosis. Nephrol Dial Transplant. 2008. [Epub ahead of print].
Tsimikas S. Percutaneous Coronary intervention results in acute increases in oxidized phospholipids and lipoprotein(a). Circulation. 2004; 109(25): 3164-70.
Nakamura K, Kishimoto T, Ohkawa R, Okubo S, Tozuka M, Yokota H, et al. Suppression of lysophosphatidic acid and lysophosphatidylcholine formation in the plasma in vitro: proposal of a plasma sample preparation method for laboratory testing of these lipids. Anal Biochem. 2007; 367(1): 20-7.
van Reyk DM, Brown AJ, Hult’en LM, Dean RT, Jessup W. Oxysterols in biological systems: sources, metabolism and pathophysiological relevance. Redox Rep. 2006; 11(6):255-62.
Brown AJ, Jessup W. Oxysterols and atherosclerosis. Atherosclerosis. 1999; 142(1):1-28.
Olkkonen VM, Lehto M. Oxysterols and oxysterol binding proteins: role in lipid metabolism and atherosclerosis. Ann Med. 2004; 36(8):562-72.
Sevanian A, Seraglia R, Traldi P, Rossato P, Ursini F, Hodis H. Analysis of plasma cholesterol oxidation products using gas and high performance liquid chromatography/mass spectrometry. Free Rad Biol Med. 1994; 17(5):397-409.
Hojo K, Hakamata H, Ito A, Kotani A, Furukawa C, Hosokawa YY, et al. Determination of total cholesterol in serum by high-performance liquid chromatography with electrochemical detection. J Chromatogr A. 2007; 1166(1-2):135-41.
Menéndez-Carreño M, García-Herreros C, Astiasarán I, Ansorena D. Validation of a gas chromatography-mass spectrometry method for the analysis of sterol oxidation products in serum. J Chromatogr B Analyt Technol Biomed Life Sci. 2008. [Epub ahead of print.]
Sevanian A, Bittolo-Bon G, Cazzolato G, Hodis H, Hwang J, Zamburlini A, et al. LDL- is a lipid hydroperoxide-enriched circulating lipoprotein. J Lipid Res. 1997; 38(3):419-28.
Hodis HN, Kramsch DM, Avogaro P, Bittolo-Bon G, Cazzolato G, Hwang J, et al. Biochemical and cytotoxic characteristics of an in vivo circulating oxidized low density lipoprotein (LDL-). J Lipid Res. 1994; 35(4):669-77.
Sanchez-Quesada JL, Benítez S, Ordonez-Llanos J. Electronegative low-density lipoprotein. Curr Opin Lipidol. 2004; 15(3):329-35.
Berliner JA, Territo MC, Sevanian A, Ramin S, Kim JA, Bamshad B, et al. Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest. 1990; 85(4): 1260-6. 26. Oliveira JA, Sevanian A, Rodrigues RJ, Apolinário E, Abdalla DSP. Minimally modified electronegative LDL and its autoantibodies in acute and chronic coronary syndromes. Clin Biochem. 2006; 39(7): 708-14.
Fraley AE, Tsimikas S. Clinical applications of circulating oxidized low-density lipoprotein biomarkers in cardiovascular disease. Curr Opin Lipidol. 2006; 17(5):502-9.
Toshima S, Hasegawa A, Kurabayashi M, Itabe H, Takano T, Sugano J, et al. Circulating oxidized low density lipoprotein levels: a biochemical risk marker for coronary heart disease. Arterioscler Thromb Vasc Biol. 2000; 20(10):2243-7.
Virella G, Derrick MB, Pate V, Chassereau C, Thorpe SR, Lopes-Virella MF. Development of capture assays for different modifications of human lowdensity lipoprotein. Clin Diagn Lab Immunol. 2005; 12(1):68-75.
Itabe H, Takeshima E, Iwasaki H, Kimura J, Yoshida Y, Imanaka T. A monoclonal antibody against oxidized lipoprotein recognizes foam cells in atherosclerotic lesions. J Biol Chem. 1994; 269(21): 15274-9.
Palinski W, Hörkkö S, Miller E, Steinbrecher UP, Powell HC, Curtiss LK, et al. Cloning of monoclonal autoantibodies to epitopes of oxidized lipoproteins from apolipoprotein E-deficient mice. J Clin Invest. 1996; 98(3):800-14.
Damasceno NR, Sevanian A, Apolinario E, Oliveira JM, Fernandes I, Abdalla DS. Detection of electronegative low density lipoprotein (LDL”) in plasma and atherosclerotic lesions by monoclonal antibody-based immunoassays. Clin Biochem. 2006; 39(1):28-38.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Dulcinéia Saes Parra ABDALLA, Karine Cavalcanti Maurício de SENA
This work is licensed under a Creative Commons Attribution 4.0 International License.