Influence of yeast (Saccharomyces cerevisiae) cell wall fractions on some nutritional parameters of growing rats

Authors

  • Saula Goulart CHAUD Universidade Estadual de Campinas
  • Valdemiro Carlos SGARBIERI Universidade Estadual de Campinas
  • Eduardo VICENTE Instituto de Tecnologia de Alimentos

Keywords:

Mannans, Cell wall, Polysaccharides, Saccharomyces cerevisiae

Abstract

Objective
The objective of the present work was to assess the nutritional impact of Saccharomyces cerevisiae cell wall fractions on some nutritional parameters in growing Wistar rats.

Methods
Yeast (Saccharomyces cerevisiae) biomass collected without undergoing thermolysis came from the mill São José, Zillo Lorenzetti (Macatuba, SP) in a suspension of approximately 20% p/v of cells. Fractionation of the cell wall material was done by differential extraction, centrifugation, and drying in “spray dryer”. The importance of the yeast cell components as dietary fibers was assessed in recently weaned Wistar rats by measuring weight gain, diet consumption (28 days), diet efficiency ratio, apparent protein digestibility, total amount of feces and lipids and cholesterol excreted in feces.

Results
Rats which were submitted to diets containing glycan plus mannan gained less weight when compared with the other diets. The mannan-containing diet yielded the highest weight gain, followed by the standard AIN diet (S-AIN) and the insoluble glycan diet. Regarding diet efficiency ratio, the diet containing glycan plus mannan produced the lowest values throughout the 28 days. The highest apparent protein digestibility was obtained for the modified standard diet, for the standard AIN diet, as well as for the 10% mannan-containing diet (M). Total lipids and cholesterol excreted in the feces varied substantially among the diets. The diet
containing 10% mannan was the one that promoted the greatest excretion of cholesterol.

Conclusion
At the end of 28 days, the rats submitted to the glycan plus mannan-containing diets consumed less food and gained less body weight than those submitted to the other diets. Apparent digestibility of all diets was high, 98.6% on average. The amounts of total lipids and cholesterol excreted in the feces varied considerably; however, the mannan-containing diet promoted proportionally more cholesterol excretion than the other diets.

References

São Paulo. Instituto de Eletrotécnica e Energia da Universidade de São Paulo. Cana de açúcar no Brasil. São Paulo. [acesso 2007 maio 5]. Disponível em: <http://infoener.iee.usp.br/ scripts/biomassa/br_cana.asp>.

Salgado JM, Sarruge JR. Efeito da lavagem sobre a qualidade do concentrado protéico obtido em destilaria de álcool. Rev Bras Tecnol. 1976; 7:339-44.

Benassi VT, Camargo CRO, Ciacco CF. Caracterização química e redução do conteúdo de ácidos nucléicos das células de levedura (Saccharomyces sp.) provenientes da produção de álcool de cana. Ciênc e Tecnol Aliment. 1990; 10(2):249-60.

Halász A, Lásztity R. Use of yeast biomass in food production. Boca Raton: CRC Press; 1991.

Yamada EA, Sgarbieri VC. Yeast (Saccharomyces cerevisiae) protein concentrate: preparation, chemical composition and nutritional functional properties. J Agric Food Chem. 2005; 53(10):3931-6.

Otero MA, Vasallo MC, Verdieira O, Fernandez V, Betancourt D. A process for the complete fracionation of baker’s yeast. J Chem Tecnol Biotechnol. 1996: 67(1):67-71.

Abreu J, Millán N. Effect of addition of brewer’s yeast to soy protein and casein on plasma cholesterol levels of rabbits. Arch Latinoam Nutr. 1994; 44(1):18-22.

Sgarbieri VC, Pacheco MTB. Physiological functional foods. Braz J Food Tech. 1999; 2(1/2):7-19.

Bell PL, Hectorne K, Reynolds H, Balm LT, Hunninghake BD. Cholesterol-lowering effects of psyllium hydrophilic mucilloid. Adjunct therapy to a prudent diet for patients with mild to moderate hypercholesterolemia. J Am Med Assoc. 1989; 261(23):3419-23.

Robbins EA, Seeley RD. Cholesterol lowering effect of dietary yeast and yeast fractions. J Food Sci. 1977; 42(3):694-8.

Williams DL, McNamee RB, Jones EL, Pretus HA, Ensley HE, Browder WI, et al. A method for the solubilization of α (1→3)-β-D-glucan isolated from Saccharomyces cerevisiae. Carbohyd Res. 1991; 219:203-13.

Sgarbieri VC, Alvim ID, Vilela ESD, Baldini VLS, Bragagnolo N. Produção piloto de derivados de levedura (Saccharomyces sp.) para uso como ingredientes na formulação de alimentos. Braz J Food Technol. 1999; 2(1/2):119-25.

Kollar R, Sturdik E, Sajbidor J. Complete fractionation of Saccharomyces cerevisiae biomass. Food Biotechnol. 1992; 6(3):225-37.

Association of Official Agricultural Chemists. Official methods of analysis. 17th ed. Gaithersburg, Maryland; 2000.

Prosky L, Asp N, Schweizer TF, Devries JW, Furda I. Determination of insoluble, soluble and total dietary fiber in foods and food products: interlaboratory study. J Assoc Of Analyt Chem. 1988; 71(5):1017-23.

Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959; 37(8):911-7.

São Paulo. Instituto Adolpho Lutz. Normas analíticas do Instituto Adolfo Lutz. Vol. 1. Métodos químicos e físicos para análises de alimentos. São Paulo; 1985. p.38-39.

Jiang Z, Fenton M, Sim, JS. Comparison of four different methods for egg cholesterol determination. Poultry Sci. 1991; 70(4):1015-9.

Reeves PG, Nielsen FH, Fahey JGC. AIN-93G purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr. 1993; 123(11):1939-51.

Vukovic R, Hundina-Dom Lado Vec M, Mrsa V. Structure of the Saccharomyces cerevisiae cell wall. Croat Chem Acta. 1995; 68(3):597-605.

Dziezak JD, Editor. Yeasts and yeast derivatives: definitions, characteristics, and processing. Food Technol. 1987; 41(2):103-21, 122-5.

Macwilliam IC. The structure, synthesis and functions of the yeast cell wall: A review. J Inst Brewing. 1970; 76(6):524-35.

Pacheco MTB, Caballero-Córdoba GM, Sgarbieri, VC. Composition and nutritive value of yeast biomass and yeast protein concentrates. J Nutr Sci Vitaminol. 1997; 43(6):601-12.

Scholz-Ahrens K, Schaafsma G, Van Der Heuvel E, Schrezenmeir J. Effects of prebiotics on mineral metabolism. Am J Clin Nutr. 2001; 73:4595-645.

Sgarbieri VC. Proteínas em alimentos protéicos. São Paulo: Varela; 1996. p.366-82.

Mongeau R, Siddiqui IR, Emery J, Brassard R. Effect of dietary fiber concentrated from celery, parsnip, and rutabaga on intestinal function, serum cholesterol, and blood glucose response in rats. J Agric Food Chem. 1990; 38(1):195-200.

Eastwood AM, Morris RE. Physical properties of dietary fiber that influence physiological function: a model for polymers along the gastrointestinal tract. Am Soc Clin Nutr. 1992; 55(7):436-42.

Uberoi SK, Vadhera S, Soni GL. Role of dietary fibre from pulses and cereals as hypocholesterolemic and hypolipidic agent. J Food Sci Technol. 1992; 29(5):281-3.

Published

2023-09-04

How to Cite

Goulart CHAUD, S. ., SGARBIERI, V. C., & VICENTE, E. . (2023). Influence of yeast (Saccharomyces cerevisiae) cell wall fractions on some nutritional parameters of growing rats. Brazilian Journal of Nutrition, 21(2). Retrieved from https://periodicos.puc-campinas.edu.br/nutricao/article/view/9565

Issue

Section

ORIGINAL ARTICLE