Effect of glycemic index on energy expenditure and energy substrate utilization before and after exercise on a stationary bicycle

Authors

  • Paula Guedes COCATE Universidade Federal de Viços
  • Rita de Cássia Gonçalves ALFENAS Universidade Federal de Viçosa
  • Letícia Gonçalves PEREIRA Universidade Federal de Viçosa
  • Josefina BRESSAN Universidade Federal de Viçosa
  • João Carlos Bouzas MARINS Universidade Federal de Viçosa
  • Paulo Roberto CECON Universidade Federal de Viçosa

Keywords:

Oxygen consumption, Exercise, Glycemic index, Energy metabolisme, Substrate

Abstract

Objective
The present study assessed, on 5 consecutive days, the effect of consuming meals with different glycemic indices on energy expenditure, energy substrate oxidation and excessive oxygen consumption after exercise.

Methods
A total of 15 well trained men aged M=24.4, SD=3.70 years with a mean body mass index of M=21.97, SD=1.46 kg/m2
and maximum oxygen uptake (VO2max) of M=70.00, SD= 5.32 mL(kg.min)-1 participated in the study. After the meal, the participants remained 90 minutes in the indirect calorimeter Deltatrac® for assessment of the metabolic parameters. Next, they exercised at 85-95% of their maximum heart rate in three bouts of 10 minutes. The metabolic parameters were reassessed within the 60 minutes following the exercise.

Results
The study treatments did not affect energy expenditure, excessive oxygen consumption or fat oxidation after exercise. However, the rate of fat oxidation in the 90 minutes that followed the meal was higher in those who consumed the high-glycemic index meal than in those who consumed the low-glycemic index meal. Moreover, the postprandial fat oxidation rate was lower than that observed after the exercise.

Conclusion
These results suggest that, while the consumption of low-glycemic index meals may not have beneficial effects, exercise can promote greater fat oxidation and, consequently, reduce body fat. 

References

Beraldo FC, Vaz IMF, Naves MMV. Nutrição, atividade física e obesidade: aspectos atuais e recomendações para prevenção e tratamento. Rev Med Minas Gerais. 2004; 14(1):57-62.

Gillette CA, Bullough RC, Melby CL. Postexercise energy expenditure in response to acute aerobic or resistive exercise. Int J Sport Nutr. 1994; 4(4): 347-60.

Phelain JF, Reinke E, Harris MA, Melby CL. Postexercise energy expenditure and substrate oxidation in young women resulting from exercise bouts of different intensity. J Am Coll Nutr. 1997; 16(4):140-6.

Yoshioka M, Doucet E, St-Pierre S, Améras N, Richard D, Labrie A, et al. Impact of high-intensity exercise on energy expenditure, lipid oxidation and body fatness. Int J Obes. 2001; 25(3): 332-9.

Febbraio MA, Keenan J, Angus D, Campbell S, Garnham AP. Preexercise carbohydrate ingestion, glucose kinetics, and muscle glycogen use: effect of the glycemic index. J Appl Physiol. 2000; 89(5): 1845-51.

Wee SL, Williams C, Tsintzas K, Boobis L. Ingestion of a high-glycemic index meal increases muscle glycogen storage at rest but augments its utilization during subsequent exercise. J Appl Physiol. 2005; 99(2):707-14.

Wee S, Williams C, Gray S, Horabintitle J. Influence of high and low glycemic index meals on endurance running capacity. Med Sci Sports Exerc. 1999; 31(3): 393-9.

Bennard P, Doucet E. Acute effects of exercise timing and breakfast meal glycemic index on exercise-induced fat oxidation. Appl Physiol Nutr Metab. 2006; 31(5):502-11.

Brand-Miller J, Foster-Powell K. Diets with a low glycemic index: from theory to pratice. Nutr Today. 1999; 34(2):64-72.

Cooper KH. O programa aeróbico para o bem estar total. Rio de Janeiro: Nórtica;1982.

Pollock ML, Wilmore JH. Exercício na saúde e na doença. Rio de Janeiro: Medsi; 1993.

Sociedade Brasileira de Hipertensão: I Diretriz Brasileira de Diagnóstico e Tratamento da Síndrome Metabólica. Rev Soc Bras Hipert 2004;7(4):1-41.

Foster-Powell K, Holt SHA, Brand-Miller, JC. International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr. 2002; 76(1):5-56.

Bray GA, Gray DS. Obesity I: Phathogenesis. Western. J Med. 1988; 149(4):429-41.

World Health Organization. Physical Status: the use and interpretation of anthropometrics. Report of a World Health Organ Expert Committee. World Organ Tech Rep Ser. 1995; 854:1-452.

McIntosh M, Miller C. A diet containing food rich in soluble and insoluble fiber improves glycemic control and reduces hyperlipidemia among patients with type 2 diabetes mellitus. Nutr Rev. 2001; 59(2): 52-5.

Chandalia M, Garg A, Lutjohann D, Von Bergmann K, Grundy SM, Brinkley LJ. Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. New Eng J Med. 2000; 342(19):1392-8.

Wu CL, Nicholas C, Williams, C, Took A, Hardy L. The influence of high-carbohydrate meal with different glycaemic indices on substrate utilization during subsequent exercise. Br J Nutr. 2003; 90(6): 1049-56.

Food and Agriculture Organization. Carbohydrates in human nutrition. Report of an FAO/WHO Expert Consultation on Carbohydrates. Rome: WHO, 1998.

Wolever TMS, Jenkins DJA, Jenkins AL, Josse RG. The glycemic index: methodology and clinical implications. Am J Clin Nutr. 1991; 54(5):846-54.

Marins J, Giannichi R. Avaliação e prescrição de atividade física. 3ª ed. Rio de Janeiro: Shape; 2003.

Karvonen JJ, Kentala E, Mustala O. The effects of trainning on heart rate, a “longitudinal” Study. Ann Med Esp Biol Fenn. 1957; 35(3):307.

Diener, JRC. Artigo de revisão: Calorimetria Indireta. Rev Assoc Med Brás. 1997; 43(3):245-53.

Valtueña S, Salas-Salvadó J, Lorda PG. The respiratory quotient as a prognostic factor in weight-loss rebound. Int J Obes. 1997, 21(9): 811-7.

Melby C, Scholl C, Edwards G, Bullough R. Effect of acute resistance exercise on post exercise energy expenditure and resting metabolic rate. J Appl Physiol 1993; 75(4):1847-53.

Fray KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol. 1983; 55(2):628-34.

Abete I, Parra D, Martinez A. Energy-restricted diets based on a distinct food selection affecting the glycemic index induce different weight loss and oxidative response. Clin Nutr. 2008; 27(4):1-7.

Tittelbach TJ, Mattes RD, Gretebeck RJ. Postexercise substrate utilization after a high glucose vs. high fructose meal during negative energy balance in the obese. Obes Res. 2000; 8(7): 496-505.

Barreiros RC, Bossolan G, Trindade CEP. Fructose in humans: metabolic effects, clinical utilization, and associated inherent errors. Rev Nutr. 2005; 18 (3):377-89. doi: 10.1590/S1415-52732005000300010.

Foureaux G , Pinto KMC, Damaso A. Efeito do consumo excessivo de oxigênio após o exercício e da taxa metabólica de repouso no gasto energético. Rev Bras Med Esporte. 2006; 12(6):393-8.

Matsuura C, Meirelles CM, Gomes PSC. Gasto energético e consumo de oxigênio pós-exercício contraresistência. Rev Nutr. 2006; 19(6):729-40. doi: 10.1590/S1415-52732006000600009.

Short KR, Sedlock DA. Excess postexercise oxygen consumption and recovery rate in trained and untrained subjects. J Appl Physiol. 1997; 83(1):153-9.

Almuzaini KS, Potteiger JA, Green SB. Effect of split exercise sessions on excess postexercise oxygen consumption and resting metabolic rate. Can J Apll Physiol. 1998; 23(5):433-43.

Published

2023-08-29

How to Cite

Guedes COCATE, P. ., Gonçalves ALFENAS, R. de C., Gonçalves PEREIRA, L. ., BRESSAN, J. ., Bouzas MARINS, J. C. ., & CECON, P. R. . (2023). Effect of glycemic index on energy expenditure and energy substrate utilization before and after exercise on a stationary bicycle. Brazilian Journal of Nutrition, 23(6). Retrieved from https://periodicos.puc-campinas.edu.br/nutricao/article/view/9435

Issue

Section

ORIGINAL ARTICLE