Prebióticos y su efecto en la biod sponibilidad del calcio

Authors

  • Ivana LAVANDA Universidade de São Paulo. Departamento de Tecnología Bioquímico-Farmacéutica.
  • Susana Marta Isay SAAD Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Nutricão Experimental.
  • Alexandre Rodrigues LOBO Universidade de São Paulo. Departamento de Tecnología Bioquímico-Farmacéutica
  • Célia COLLI Universidade de São Paulo. Departamento de Tecnología Bioquímico-Farmacéutica.

Keywords:

Calcio, Dietética, Minerales, Polisacáridos, Prebióticos

Abstract

En la búsqueda de medidas de prevención de enfermedades crónicas no trasmisibles, se piensa en los prebióticos como una forma efectiva, saludable y relativamente barata para la optimización de la absorción de Ca. El aumento de la expectativa de vida de la población y el incremento de enfermedades como la osteoporosis traen graves consecuencias a la salud del individuo, acarreando importantes desembolsos económicos. En esta revisión se condensa el conocimiento presente sobre el efecto fisiológico del consumo de carbohidratos prebióticos y su posible interferencia en la biodisponibilidad del Ca, como también las posibilidades de su empleo en estrategias para combatir las deficiencias del mineral. Se elaboró una recopilación de los estudios originales realizados con mayor impacto en el tema, dando preferencia a los publicados en los últimos 6 años. Utilizamos las bases de datos PubMed, Lilacs e SciELO, usando las palabras claves calcio, prebióticos e probióticos.

References

Food and Agriculture Organization of the United Nations. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Córdoba; 2001 [cited 2005 Feb.3]. Available from: <ftp://ftp.fao.org/docrep/fao/meeting/009/y6398e.pdf>.

Sanders ME. Probiotics: considerations for human health. Nutr Rev. 2003; 61:91-9.

Gibson GR, Roberfroid M. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 1995; 125:1401-12.

Reid G, Sanders ME, Rex GH, Gibson GR, Mercenier A, Rastall R, et al. New scientific paradigms for probiotics and prebiotics. J Clin Gastroenterol. 2003; 37:105-18.

Saad SMI. Probióticos e prebióticos: o estado da arte. Braz J Pharm Sciences. 2006; 42:1-16

Buriti FCA, Cardarelli HR, Saad SMI. Biopreservation by Lactobacillus paracasei in coculture with Streptococcus thermophilus in potentially probiotic and synbiotic fresh cream cheeses. J Food Protection. 2007; 70:228-35.

Anjo DLC. Alimentos funcionais em angiologia e cirurgia vascular. J Vasc Br. 2004; 3:145- 54.

Walzem RL. Functional foods. Trends Food Sci Technol. 2004; 15:518.

Manning TS, Gibson GR. Prebiotic. Best Practice Res Clin Gastroenterol. 2004; 18:287-98.

Langlands SJ, Hopkins MJ, Coleman N, Cummings JH. Prebiotic carbohydrates modify the mucosa associated microflora of the human large bowel. Gut. 2004; 53:1610-16.

Roberfroid M. Prebiotics: the concept revisited. J Nutr. 2007; 137: 830S-7S.

Schaafsma G. Lactose and Lactose derivaties as bioactive ingredients in human nutrition. Int Diary J. 2008; 18:458-65.

Gibson GR, Probert HM, Van Loo JAE, Rastall RA, Roberfroid M. Dietary modulation of the human colonic microbiota: updating the concept of prebiotic. Nutr Res Rev. 2004; 17:259-75

Pedreschi R, Campos D, Noratto G, Chirinos R, Cisneros-Zevallos L. Andean yacon root (Smallanthus sonchifolius Poepp. Endl) fructooligosaccharides as a potential novel source of prebiotics. J Agric Food Chem. 2003; 51:5278-84.

Roberfroid MB, Van Loo JAE, Gibson GR. The bifidogenic nature of chicory inulin and its hydrolysis products. J Nutr. 1998; 128:11-9.

Fuentes-Zaragoza E, Riquelme-Navarrete MJ, Sánchez-Zapata E, Pérez-Álvarez JA. Resistant starch as funcional ingredient. Food R Int. 2010; 43:931-42.

Bruzzese E, Volpicelli M, Squaglia M, Tartaglione A, Guarino A. Impact of prebiotics on human health. Dig. Liver Dis. 2006; 38(Suppl 2):S283-7.

Perrin S, Warchol M, Grill JP, Schneider F. Fermentations of fructo-oligosaccharides and their components by Bifidobacterium infantis ATCC 15697 on batch culture in semi-synthetic medium. J Appl Microbiol. 2001; 90:859-65.

Kaplan H, Hutkins R. Metabolism of fructooligosaccharides by Lactobacillus paracasei 1195. Appl Environ Microbiol. 2003; 69:2217-22.

Rossi M, Corradini C, Amaretti A, Nicolini M, Pompei A, Zanoni S, et al. Fermentation of Fructooligosaccharides and Inulin by Bifidobacteria: a comparative study of pure and fecal cultures. Appl Environ Microbiol. 2005; 71:6150-8

Rastall R, Gibson GR, Gill HS, Guarner F, Klaenhammer TR, Pot B, et al. Modulation of the microbial ecology of the human colon by probiotics, prebiotics and synbiotics to enhance human health: an overview of enabling science and potential applications. FEMS Microbiol Ecol. 2005; 52: 145-52.

Roberfroid M. Introducing inulin-type fructans. Br J Nutr. 2005; 93(Suppl 1):S13-S25.

Organización Mundial de la Salud. Comité de expertos y grupos de estudio. Prevención y tratamiento de la osteoporosis. Ginebra; 2000. Available from:<http://www.who.int/gb/ebwha/pdf_files/EB114/B114_13-sp.pdf>

Kruger MC, Brown KE, Collett G, Layton L, Schollum LM. The effect of fructooligosaccharides with various degrees of polymerization on calcium bioavailability in the growing rat. Exp Biol Med. 2003; 228:683-8.

Raschka L, Daniel H. Mechanisms underlying the effects of inulin-type fructans on calcium absorption in the large intestine of rats. Bone. 2005;37:728-35.

Pérez-Conesa D, Lopez GY, Ros G. Effects of probiotic, prebiotic and synbiotic follow-up infant formulas on large intestine morphology and bone mineralisation in rats. J Sci Food Agric. 2007; 87: 1059-68.

Weaver C. Inulin, oligofructose and bone health: experimental approaches and mechanisms. Br J Nutr. 2005;93(Suppl 1):S99-S103.

Peng JB, Brown, EM, Hediger MA. Apical entry channels in calcium-transporting epithelia. News Physiol Sci. 2003; 18:158-63.

Machado DF, Silva RR, Fanchiotti FE, Costa NMB. Probióticos, prebióticos e simbióticos e seus efeitos na biodisponibilidade do cálcio. J Braz Soc Food Nutr. 2001; 22:73-83.

Coxam V. Inulin-type fructans and bone health: state of the art and perspectives in the management of osteoporosis. Br J Nutr. 2005; 93(Suppl 1):S111-S23.

Mineo H, Hara H, Kikuchi H, Sakurai H, Tomita F. Various indigestible saccharides enhance net calcium transport from the epithelium of the small and large intestine of rats in vitro. J Nutr. 2001; 31:3243-46.

Zafar TA, Weaver CM, Zhao Y, Martin BR, Wastney E. Nondigestible Oligosaccharides increase calcium absorption and suppress bone resorption in ovariectomized rats. J Nutr. 2004; 134:399-402.

Roberfroid M, Cump J, Devogelaer P. Dietary chicory inulin increases whole-body bone mineral density in growing male rats. J Nutr. 2002; 132:3599-602.

Abrams AA, Griffin IJ, Hawthorne KM, Liang L, Gunn SK, Darlington G, et al. A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am J Clin Nutr. 2005; 82:471-6.

Nzeusseu A, Dienst D, Haufroid V, Depresseux G, Devogelaer JP, Manicourt DH. Inulin and fructooligosaccharides differ in their ability to enhance the density of cancellous and cortical bone in the axial and peripheral skeleton in growing rats. Bone. 2006; 37:394-9.

Lobo AR, Colli C, Alvares EP, Filisetti TMCC. Effects of fructans-containing yacon (Smallanthus sonchifolius Poepp & Endl.) flour on caecum mucosal morphometry, calcium and magnesium balance, and bone calcium retention in growing rats. Br J Nutr. 2007; 97:776-85.

Lobo AR, Colli C, Filisetti TMCC. Fructooligosaccharides improve bone mass and biomechanical properties in rats. Nutr Res. 2006; 26:413-20.

Pérez-Conesa D, López G, Abellán P, Ros G. Bioavailability of calcium, magnesium and phosphorus in rats fed probiotic, prebiotic and synbiotic powder follow-up infant formulas and their effect on physiological and nutritional parameters. J Sci Food Agric. 2006; 86:2327-36.

Lobo AR, Cocato ML, Jorgetti V, Sá LR, Nakano EY, Colli C. Changes in boné mass, biomechanical properties, and microarchitecture of calcium-and iron-deficient rats fed diets supplemented with inulin-type fructans. Nutr Res. 2009; 29(12):873- 81.

Rémésy C, Levrat MA, Gamet L, Demigné C. Cecal fermentations in rats fed oligosaccharides (inulin) are modulated by dietary calcium level. Am J Physiol. 1993; 264: G855-G62.

Sakuma K. Molecular mechanism of the effect of fructooligosaccharides on calcium absorption. Biosci Microflora. 2002; 21:13-20.

Ohta A, Motohashi Y, Ohtsuki M, Hirayama M, Adachi T, Sakuma K. Dietary fructooligosaccharides change the concentration of calbindin-D9k differently in the mucosa of the small and large intestine of rats. J Nutr. 1998; 128:934-9.

Takasaki M, Inaba H, Ohta A, Motohashi Y, Sakai K, Morris H, et al. Dietary short-chain fructooligosaccharides increase calbindin- D9K levels only in the large intestine in rats independent of dietary calcium deficiency or serum 1,25 dihydroxyvitamin D levels. Int J Vitaminol Nutr Res. 2000; 70:206-13.

Lobo AR, Mancini-Filho J, Alvares EP, Cocato ML, Colli C. Effects of dietary lipid composition and inulin-type fructans on mineral bioavailability in growing rats. Nutrition. 2009; 25:216-25.

Scholz-Ahrens KE, Schrezenmeir J. Inulin, oligofructose and mineral metabolism: experimental data and mechanism. Br J Nutr. 2002; 87(Suppl 2):S179-86

Fukushima A, Aizaki Y, Sakuma K. Short-Chain fatty acids induce intestinal transient receptor potential vanilloid type 6 expression in rats and caco-2 cells. J Nutr. 2009; 139:20-5.

Roberfroid M. Functional food concept and its application to prebiotics. Digestive Liver Dis. 2002; 34 (Suppl 2):105-10.

Jamieson AJ, Ryz NR, Taylor CG, Weiler HA. Dietary long-chain inulin reduces abdominal fat but has no effect on bone density in growing female rats. Br J Nutr. 2008; 100:451-9.

Cani PD, Neyrinck AM, Maton N, Delzenne NM. Oligofructose promotes satiety in rats fed a highfat diet: involvement of glucagon-like peptide-1. Obes Res. 2005; 13:1000-7.

Coudray C, Tressol JC, Gueux E, Rayssiguier Y. Effect of inulin-type fructans of different chain length and type of branching on intestinal absorption and balance of calcium and magnesium in rats. Eur J Nutr. 2003; 42:91-9.

Coudray C, Feillet-Coudray C, Tressol JC, Gueux E, Thien S, Jaffrelo L, et al. Stimulatory effect of inulin on intestinal absorption of calcium and magnesium in rats is modulated by dietary calcium intakes short- and long-term balance studies. Eur J Nutr. 2005; 44:293-302.

Lemort C, Roberfroid M, Devogelaer JP. Influence of chicory inulin on whole body bone mineral density in growing male rats. J Nutr. 2002; 132: 3599-602.

Younes H, Coudray C, Bellanger J, Demigné C, Rayssiguier Y, Rémésy C. Effects of two fermentable carbohydrates (inulin and resistant starch) and their combination on calcium and magnesium balance in rats. Br J Nutr. 2001;86: 479-85.

Demigné C, Jacobs H, Moundras C, Davicco MJ, Horcajada MN, Bernalier A, et al. Comparison of native or reformulated chicory fructans, or nonpurified chicory on rat cecal fermentation and mineral metabolism. Eur J Nutr. 2008; 47:366-74.

Wang Y, Zeng T, Wang S, Wang Q, Yu HX. Fructooligosaccharides enhance the mineral absorption and counteract the adverse effects of phytic acid in mice. Nutrition. 2009; doi: 10.1016/j.nut.2009.0 4.014.

Lopez HW, Coudray C, Levrat-Verny M-A, Coudray CF, Demigné C, Rémésy C. Fructooligosaccharides enhance mineral apparent absorption and counteract the deleterious effects of phytic acid on mineral homeostasis in rats. J Nutr Biochem. 2000; 11:500-8

Griffin IJ, Abrams S, Hicks P, Heaney R. NonDigestible Oligosaccharides (NDO) increase calcium absorption, especially those whose calcium absorption is poorest. Pediatr Res. 2002; 51:188A.

Griffin IJ, Penni MD, Hicks P, Heaney R, Abrams S. Enriched chicory inulin increases calcium absorption mainly in girls with lower calcium absorption. Nutr Res. 2003;23:901-9

Abrams SA, Grifn IJ, Hawthorne KM. Young adolescents who respond to an inulin-type fructan substantially increase total absorbed calcium and daily calcium accretion to the skeleton. J Nutr. 2007; 137:2524S-6S.

Abrams SA, Hawthorne KM, Aliu O, Hicks PD, Chen Z, Grifn IJ. An inulin-type fructan enhances calcium absorption primarily via an effect on colonic absorption in humans. J Nutr. 2007; 137:2208-12.

Van den Heuvel EGHM, Muys T, Van dokkum M, Schaafsma G. Oligofructose stimulates calcium absorption in adolescents. Am J Clin Nutr. 1999; 69:544-8

Van den Heuvel EGHM, Muijs T, Brouns F, Hendriks HFJ. Short-chain fructo-oligosaccharides improve magnesium absorption in adolescent girls with a low calcium intake. Nutr Res. 2009; 29:229-37.

Coudray C, Bellanger J, Castiglia-Delavaud C, Vermorel M, Rayssignuier Y. Effect of soluble or partly soluble dietary fibres supplementation on absorption and balance of calcium, magnesium, iron and zinc in healthy young man. Eur J Clin Nutr. 1997; 51:375-80.

Tomita K, Shiomi T, Okuhara Y, Tamura A, Shigematsu N, Hara H. Ingestion of difructose anhydride III enhances absorption and retention of calcium in healthy men. Biosc Biotecnol Biochem. 2007; 71:681-7.

. Bruggencate SJMT, Bovee-Oudenhoven IMJ, Lettink-Wissink MLG, Katan MB, van der Meer R. Dietary fructooligosaccharides affect intestinal barrier function in healthy men. J Nutr. 2006; 136: 70-74.

Tahiri M, Tressol JC, Arnaud J, Bornet FRJ, Bouteloup-Demange C, Feillet-Coudray C, et al. Effect of short-chain fructooligosaccharides on intestinal calcium absorption and calcium status in postmenopausal women: a stable-isotope study. Am J Clin Nutr. 2003; 77:449-57.

Holloway L, Moynihan S, Abrams SA, Kent K, Hsu AR, Friedlander AL. Effects of oligofructoseenriched inulin on intestinal absorption of calcium and magnesium and bone turnover markers in postmenopausal women. Br J Nutr. 2007; 97: 365-72.

Scholz-Ahrens KE, Schrezenmeir J. Inulin and oligofructose and mineralmetabolism: the evidence from animal trials. J Nutr. 2007; 137:2513S-23S.

Chaila Z, Ortiz Zavalla J, Alarcón O, Gusils C, Gauffin Cano P, Moreno R, et al. Relation between probiotic milk administration and some bone turnover markers. J Food Technol. 2005; 3:135-42.

Mathey J, Mardon J, Fokialakis N, Puel J, KatiCoulibaly S, Mitakou S, et al. Modulation of soy isoflavones bioavailability and subsequent effects on bone health in ovariectomized rats: the case for equol. Osteoporos Int. 2007; 18:671-9.

Van Loo JA. Prebiotics promote good health: the basis, the potential, and the emerging evidence. J Clin Gastroenterol. 2004; 38(Suppl 6):S70-5.

Roberfroid M. Inulin-type fructans: functional food ingredients. Trends Food Sci Technol. 2006; 17:39-41.

Published

2023-08-29

How to Cite

LAVANDA, I. ., SAAD, S. M. I. ., LOBO, A. R., & COLLI, C. (2023). Prebióticos y su efecto en la biod sponibilidad del calcio. Brazilian Journal of Nutrition, 24(2). Retrieved from https://periodicos.puc-campinas.edu.br/nutricao/article/view/9428

Issue

Section

ARTIGOS DE REVISÃO