Does early weaning influence weight gain and body composition in adult mice?

Authors

  • Marcelo Macedo ROGERO Universidade de São Paulo
  • Maria Carolina BORGES Universidade de São Paulo
  • Ivanir Santana de Oliveira PIRES Universidade de São Paulo
  • Julio TIRAPEGUI Universidade de São Paulo

Keywords:

Breastffeeding, Mice, Body composition, Food consumption, Weaning

Abstract

Objective
The objective of this study was to assess the effect of early weaning on weight gain and body composition of young adult mice.

Methods
Swiss Webster male mice were weaned early, on the 14th day of life, or breastfed until the 21st day of life (control group). After weaning, the animals were fed a chow specifically made for growing rodents up to the 63rd day of life, when they were sacrificed.

Results
The body weight of the animals from the early-weaned group was significantly greater on the 28th, 35th, 63rd days of life compared to those from the control group (p<0.05). Nevertheless, no significant difference in the food intake between the groups was observed. The concentration of serum total proteins, albumin and iron, as well as the concentration of protein, DNA and the protein/RNA ratio in the liver, muscle and brain, did not differ between the groups..The early-weaned group showed an increased absolute quantity of lean mass, lipids, protein and ash compared with the control group (p<0.05). The relative quantity of water, lipids, lean mass, protein and ash did not differ between the groups.

Conclusion
Early weaning, associated with the consumption of a chow specifically made for growing rodents, led to an increase in weight gain, but did not influence body composition in adult mice. 

References

Wang Y, Lobstein T. Worldwide trends in childhood overweight and obesity. Int J Pediatr Obes. 2006; 1(1):11-25. doi: 10.1080/17477160600586747.

Kelishadi R. Childhood overweight, obesity, and the metabolic syndrome in developing countries. Epidemiol Rev. 2007; 29: 62-76. doi: 10.1093/epirev/mxm003.

Togashi K, Masuda H, Rankinen T, Tanaka S, Bouchard C, Kamiya H. A 12-year follow-up study of treated obese children in Japan. Int J Obes Relat Metab Disord. 2002; 26(6):770-7. doi: 10.1038/sj.ijo.0801992.

Magarey AM, Daniels LA, Boulton TJ, Cockington RA. Predicting obesity in early adulthood from childhood and parental obesity. Int J Obes Relat Metab Disord. 2003; 27(4):505-13. doi: 10.1038/sj.ijo.0802251.

Baker JL, Olsen LW, Sørensen TI. Childhood bodymass index and the risk of coronary heart disease in adulthood. N Engl J Med. 2007; 357(23): 2329-37. doi: 10.1016/j.jvs.2008.02.015.

Gibson LJ, Peto J, Warren JM, Santos Silva I. Lack of evidence on diets for obesity for children: a systematic review. Int J Epidemiol. 2006; 35(6): 1544-52. doi: 10.1093/ije/dyl208.

Snethen JA, Broome ME, Cashin SE. Effective weight loss for overweight children: a metaanalysis of intervention studies. J Pediatr Nurs. 2006; 21(1):45-56. doi: 10.1016/j.pedn.2005.06.006.

Filteau SM. Role of breast-feeding in managing malnutrition and infectious disease. Proc Nutr Soc. 2000; 59(4):565-72. doi: 10.1017/S002966510000080X.

Hanson LA. Session 1: Feeding and infant development breast-feeding and immune function. Proc Nutr Soc. 2007; 66(3):384-96. doi: 10.1017/S0029665107005654.

Rogero MM, Borelli P, Fock RA, Pires IS, Tirapegui J. Glutamine in vitro supplementation partly reverses impaired macrophage function resulting from early weaning in mice. Nutrition. 2008; 24(6): 589-98. doi: 10.1016/j.nut.2008.02.005.

Rogero MM, Borelli P, Vinolo MA, Fock RA, Pires IS, Tirapegui J. Dietary glutamine supplementation affects macrophage function, hematopoiesis and nutritional status in early weaned mice. Clin Nutr. 2008; 27(3):386-97. doi: 10.1016/j.clnu.2008.03.004.

Rogero MM, Tirapegui J, Vinolo MA, Borges MC, De Castro IA, De Oliveira Pires IS, et al. Dietary glutamine supplementation increases the activity of peritoneal macrophages and hemopoiesis in early-weaned mice inoculated with Mycobacterium bovis bacillus Calmette-Guérin. J Nutr. 2008; 138(7):1343-8.

Ounsted M, Sleigh G. The infant’s self-regulation of food intake and weight gain. Difference in metabolic balance after growth constraint or acceleration in utero. Lancet. 1975; 1(7922): 1393-7. doi: 10.1016/S0140-6736(75)92605-7.

Birch LL, Fisher JO. Development of eating behaviors among children and adolescents. Pediatrics. 1998; 101(3):539-48. doi: 10.1542/peds.101.3.S1.539.

Lucas A, Sarson DL, Blackburn AM, Adrian TE, Aynsley-Green A, Bloom SR. Breast vs bottle: endocrine responses are different with formula feeding. Lancet. 1980; 1(8181):1267-9. doi: 10.1016/S0140-6736(80)91731-6.

Lucas A, Boyes S, Bloom SR, Aynsley-Green A. Metabolic and endocrine responses to a milk feed in six-day-old term infants: differences between breast and cow’s milk formula feeding. Acta Paediatr Scand. 1981; 70(2):195-200. doi: 10.1111/j.1651-2227.1981.tb05541.x.

Savino F, Fissore MF, Grassino EC, Nanni GE, Oggero R, Silvestro L. Ghrelin, leptin and IGF-I levels in breastfed and formula-fed infants in the first year of life. Acta Paediatr. 2005; 94(5):531-7. doi: 10.1111/j.1651-2227.2005.tb01934.x.

Grosvenor CE, Picciano MF, Baumrucker CR. Hormones and growth factors in milk. Endocr Rev. 1993; 14(6):710-28. doi: 10.1210/edrv146710.

Hauner H, Rohrig K, Petruschke T. Effects of epidermal growth factor (EGF), platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) on human adipocyte development and function. Eur J Clin Invest. 1995; 25(2): 90-6. doi: 10.1111/j.1365-2362.1995.tb01532.x.

Casabiell X, Pineiro V, Tome MA, Peino R, Dieguez C, Casanueva FF. Presence of leptin in colostrum and/or breast milk from lactating mothers: a potential role in the regulation of neonatal food intake. J Clin Endocrinol Metab. 1997; 82(12): 4270-3. doi: 10.1210/jc.82.12.4270.

Bonomo IT, Lisboa PC, Passos MC, Alves SB, Reis AM, Moura EG. Prolactin inhibition at the end of lactation programs for a central hypothyroidism in adult rat. J Endocrinol. 2008; 198(2):331-7. doi: 10.1677/JOE-07-0505.

Bonomo IT, Lisboa PC, Pereira AR, Passos MC, de Moura EG. Prolactin inhibition in dams during lactation programs for overweight and leptin resistance in adult offspring. J Endocrinol. 2007; 192(2):339-44. doi: 10.1677/joe.1.06952.

Loizzo A, Loizzo S, Galietta G, Caiola S, Spampinato S, Campana G, et al. Overweight and metabolic and hormonal parameter disruption are induced in adult male mice by manipulations during lactation period. Pediatr Res. 2006; 59(1):111-5. doi: 10.1203/01.pdr.0000190575.12965.ce.

Picó C, Oliver P, Sánchez J, Miralles O, Caimari A, Priego T, et al. The intake of physiological doses of leptin during lactation in rats prevents obesity in later life. Int J Obes. 2007; 31(8):1199-209. doi: 10.1038/sj.ijo.0803585.

Attig L, Solomon G, Ferezou J, Abdennebi-Najar L, Taouis M, Gertler A, et al. Early postnatal leptin blockage leads to a long-term leptin resistance and susceptibility to diet-induced obesity in rats. Int J Obes. 2008; 32(7):1153-60. doi: 10.1038/ijo.2008.39.

Toschke AM, Vignerova J, Lhotska L, Osancova K, Koletzko B, Von Kries R. Overweight and obesity in 6- to 14-year-old Czech children in 1991: protective effect of breast-feeding. J Pediatr. 2002; 141(6): 764-9. doi: 10.1067/mpd.2002.128890.

Kvaavik E, Tell GS, Klepp KI. Surveys of Norwegian youth indicated that breast feeding reduced subsequent risk of obesity. J Clin Epidemiol. 2005; 58(8):849-55. doi: 10.1016/j.jclinepi.2004.12.007.

Shields L, O’Callaghan M, Williams GM, Najman JM, Bor W. Breastfeeding and obesity at 14 years: a cohort study. J Paediatr Child Health. 2006; 42(5): 289-96. doi: 10.1111/j.1440-1754.2006.00864.x.

Li C, Goran MI, Kaur H, Nollen N, Ahluwalia JS. Developmental trajectories of overweight during childhood: role of early life factors. Obesity. 2007; 15(3): 760-71. doi: 10.1038/oby.2007.90.

Araújo CL, Victora CG, Hallal PC, Gigante DP. Breastfeeding and overweight in childhood: evidence from the Pelotas 1993 birth cohort study. Int J Obes. 2006; 30(3):500-6. doi: 10.1038/sj.ijo.0803160.

Nelson MC, Gordon-Larsen P, Adair LS. Are adolescents who were breast-fed less likely to be overweight? Analysis of sibling pairs to reduce confounding. Epidemiology. 2005; 16(2):247–53. doi: 10.1097/01.ede.0000152900.81355.00.

Hediger ML, Overpeck MD, Kuczmarski RJ, Ruan WJ. Association between infant breastfeeding and overweight in young children. JAMA. 2001; 285(19):2453-60. doi: 10.1001/jama.285.19.2453.

Owen CG, Martin RM, Whincup PH, Davey-Smith G, Gillman MW, Cook DG. The effect of breastfeeding on mean body mass index throughout life: a quantitative review of published and unpublished observational evidence. Am J Clin Nutr. 2005; 82(6):1298-307.

Cope MB, Allison DB. Critical review of the World Health Organization’s (WHO) 2007 report on ‘evidence of the long-term effects of breastfeeding: systematic reviews and meta-analysis’ with respect to obesity. Obes Rev. 2008; 9(6):594-605. doi: 10.1111/j.1467789X.2008.00504.x.

Horta BL, Bahl R, Martinés JC, Victora CG. Evidence on the long-term effects of breastfeeding: systematic reviews and meta-analysis. World Health Organization. [cited 2009 Feb 6]. Available from: <http://whqlibdoc.who.int/publications/2007/9789241595230_eng.pdf>.

Reeves PG, Nielsen FH, Fahey GC Jr. Ain-93 purified diets for laboratory rodents: final report of the American institute of nutrition “ad hoc” writing committee on the reformulation of the AIN-76a rodent diet. J Nutr. 1993; 123(11):1939-51.

Dell RB, Holleran S, Ramakrishnan R. Sample Size Determination. ILAR J. 2002; 43(4): 207-13.

Goodwin JF, Murphy B, Guillemette M. Direct measurement of serum iron and binding capacity. Clin Chem. 1966; 12(2):47-57.

Doumas T. Albumin standards and measurement of serum albumin with bromocresol green. Clin Chim Acta. 1971; 31(1):87-96.

Lowry OH, Rosebruogh NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193(1):265-75.

Munro NN, Fleck A. The determination of nucleic acids. Methods Biochem Anal. 1966; 14: 113-76.

Gendimenico GJ, Bouquin PL, Tramposch KM. Diphenylamine-colorimetric method for DNA assay: a shortened procedure by incubating samples at 50 degrees C. Anal Biochem. 1988; 173(1):45-8.

Donato Jr J, Pedrosa RG, Cruzat VF, Pires IS, Tirapegui J. Effects of leucine supplementation on the body composition and protein status of rats submitted to food restriction. Nutrition. 2006; 22(5):520-7. doi: 10.1016/j.nut.2005.12.008.

Hedrich HJ, Bullock G. The laboratory mouse. Boston: Elsevier Academic Press; 2004.

Published

2023-08-25

How to Cite

Macedo ROGERO, M. ., BORGES, M. C., Santana de Oliveira PIRES, I. ., & TIRAPEGUI, J. . (2023). Does early weaning influence weight gain and body composition in adult mice?. Brazilian Journal of Nutrition, 23(1). Retrieved from https://periodicos.puc-campinas.edu.br/nutricao/article/view/9338

Issue

Section

ORIGINAL ARTICLE