Hepatic biochemical changes in rats submitted to a high-fat/high-energy diet

Authors

  • Leandro Pereira de MOURA Universidade Estadual Paulista Júlio de Mesquita Filho
  • Rodrigo Augusto DALIA Universidade Estadual Paulista Júlio de Mesquita Filho
  • Michel Barbosa de ARAÚJO Universidade Estadual Paulista Júlio de Mesquita Filho
  • Amanda Christine da Silva SPONTON Universidade Estadual Paulista Júlio de Mesquita Filho
  • José Rodrigo PAULI Universidade Estadual de Campinas
  • Rodrigo Ferreira de MOURA Universidade Estadual Paulista Júlio de Mesquita Filho
  • Maria Alice Rostom de MELLO Universidade Estadual Paulista Júlio de Mesquita Filho

Keywords:

Diet, high-fat, Non-alcoholic fatty liver disease, Insulin resistance, Overweight

Abstract

Objective
The present study analyzed the biochemical and hepatic changes in adult rats fed a high-fat diet for two months.

Methods
Twenty Wistar rats 90 days old were divided into two groups, a control group consisting of normal weight rats fed a commercial rat chow and a diet group consisting of normal weight rats submitted to a semipurified high-fat, high-energy diet. The animals in control group were kept on a commercial Purina® chow and those in diet group on a high-fat/high-energy diet containing 35% fat, of which 31% were from animal source (39% saturated fat) and 4% were from vegetable source (soybean oil). After 60 days of this experimental diet, the following were assessed: body weight, insulin sensitivity, blood glucose, serum insulin and free fatty acids,
triglycerides, total lipids and hepatic lipogenic activity.

Results
Diet group presented higher body mass and insulin resistance. Blood glucose did not differ between the groups. A higher level of serum insulin and free fatty acids were found in diet group. Total lipids, triglycerides and lipogenic rate were also higher in group D.

Conclusion
Therefore, the present findings demonstrate that two months of a high-fat/high-energy diet increases the body weight and hepatic free fatty acids and decreases insulin sensitivity of adult rats, typical signs of non-alcoholic fatty liver disease.

References

Amuna P, Zotor FB. Epidemiological and nutrition transition in developing countries: impact on human health and development. Proc Nutr Soc. 2008; 67:82-90.

World Health Organization. Obesity: preventing and managing the global epidemic. Geneva: WHO; 1998. Report of a WHO Consultation on Obesity.

Instituto Brasileiro de Geografia e Estatística. POF 2008-2009: antropometria e estado nutricional de crianças, adolescentes e adultos no Brasil. Rio de Janeiro: IBGE; 2008.

Marti A, Marcos A, Martinez J. Obesity and immune function relationships. Obes Rev. 2001; 2(2):131-40.

Mendes MJFL, Alves JGB, Alves AV, Siqueira PP, Freire EFC. Associação de fatores de risco para doenças cardiovasculares em adolescentes e seus pais. Rev Bras Saúde Matern Infant. 2006; 6:49-54.

World Health Organization. Diet, nutrition and the prevention of chronic diseases. Geneva: WHO; 2003. WHO Technical Report Series, 916.

Seth D, Garmo H, Wigertz A, Holmberg L, Hammar N, Jungner I, et al. Lipid profiles and the risk of endometrial cancer in the Swedish AMORIS study Int J Mol Epidemiol Genet. 2012; 3(2):122-33.

Guedes DP, Guedes JERD, Barbosa DS, Oliveira JA, Stanganelli LCR. Fatores de risco cardiovasculares em adolescentes: indicadores biológicos e comportamentais. Arq Bras Cardiol. 2006; 86:439-50.

Ezzati M, Lopez AD, Rodgers A, Van Der Hoorn S, Murray CJL. The comparative risk assessment collaborating group: selected major risk factors and global and regional burden of disease. Lancet. 2002; 360(9343):1347-60.

Utzschneider KM, Kahn SE. Review: the role of insulin resistance in nonalcoholic fatty liver disease. J Clin Endicrinol Metab. 2006; 91:4753-61.

Williams R. Global challenges in liver disease. Hepatology. 2006; 44:521-6.

Goldberg IJ, Ginsberg HN. Ins and outs modulating hepatic triglyceride and development of nonalcoholic fatty liver disease. Gastroenterology. 2006; 130(4):1343-46.

Carvalho MHC, Colaço AL, Fortes ZB. Citocinas, disfunção endotelial e resistência à insulina. Arq Bras Endocrinol Metab. 2006; 50(2):304-12.

Pratchayasakul W, Kerdphoo S, Petsophonsakul P, Pongchaidecha A, Chattipakorn N, Chattipakorn SC, et al. Effects of high-fat diet on insulin receptor function in rat hippocampus and the level of neuronal corticosterone. Life Sci. 2011; 88(13-4): 619-27.

Reeves PG, Nielsen FH, Fahey GC JR. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN76Arodent diet. J Nutr. 1993; 123(11):1939-51.

Lundbaeck K. Intravenous glucose tolerance test as a tool in definition and diagnosis of diabetes Mellitus. Br Med J. 1962; 1(529):1507-13.

Herbert V, Lau KS, Gottlieb CW, Bleicher SJ. Coated Charcoals immunoassay of insulin. J Clin Endocrinol Metab. 1965; 25(10):1375-84.

Regow BJM, Cornelissen PJHC, Helder APR, Spijkers JBF, Weeber YMM. Specific determination of free fatty acid in plasm. Clin Acta Chim. 1971; 31(1): 187-95.

Nogueira DM, Strufaldi B, Hirata MH, Abdalla DSP, Hirata RDC. Métodos de bioquímica clínica: técnicas e interpretação. São Paulo: Pancast; 1990.

Robinson AM, Williamson DH. Control of glucose metabolism in isolated acini of the lactanting mammary gland of the rat: effects of oleat on glucose utilization and lipogenesis. Biochemistry J. 1978; 170(3):609-13.

Pereira LO, Francischi RP, Lancha Junior AH. Obesidade: hábitos nutricionais, sedentarismo e resistência à insulina. Arq Bras Endocrinol Metab. 2003; 47(2):111-27.

Lladó I, Rodríguez-Cuenca S, Pujol E, Monjo M, Estrany M, Roca P, et al. Gender effects on adrenergic receptor expression and lipolysis in white adipose tissue of rats. Obes Res. 2002; 10(4):296-305.

Araújo GG, Araújo MB, D’Angelo RA, Manchado FB, Mota CSA, Ribeiro C, et al. Máxima Fase estável de lactato em ratos obesos de ambos os gêneros. Rev Bras Med Esporte. 2009; 15(1):46-9.

Ropelle ER, Pauli JR, Prada PO, Souza CT, Picardi PK, Faria MC, et al. Reversal of diet-induced insulin resistance with a single bout of exercise in the rat: the role of PTP1B and IRS-1 serine phosphorylation. J Physiol. 2006; 577(3):997-1007.

Flatt JP. Use and storage of carbohydrate and fat. Am J Clin Nutr. 1995; 61:952-9.

Cesaretti MRL, Kohlmann Jr O. Modelos experimentais de RI e obesidade. Arq Bras Endocrinol Metab. 2006; 50(2):90-197.

Ropelle ER, Pauli JR, Prada P, Cintra DE, Rocha GZ, Moraes JC, et al. Inhibition of hypothalamic Foxo1 expression reduced food intake in diet-induced obesity rats. J Physiol. 2009; 587(Pt10):2341-51.

Machado M, Cortez-Pinto H. Non-alcoholic fatty liver disease and insulin resistance. Eur J Gastroent Hepatol. 2005; 17(8):823-6.

Himsworth HP, Kerr RB. Insulin-sensitive and insulininsensitive types of diabetes mellitus. Clin Sci (London). 1939; 4:120-52.

Boden G, Shulman GI. Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and E-cell dysfunction. Eur J Clin Invest. 2002; 32(3):14-23.

Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest. 2008; 118(3):829-38.

Diehl AM. Nonalcoholic steatohepatitis. Semin Liver Dis. 1999; 19(2):221-9.

Oosterveer MH, Van Dijk TH, Tietge UJF, Boer T, Havinga R, Stellaard F, et al. High fat feeding induces hepatic fatty acid elongation in mice. PLoS ONE. 2009; 4(6):e6066. doi:10.1371/journal.pone. 0006066.

Published

2023-08-24

How to Cite

Pereira de MOURA, L. ., DALIA, R. A., Barbosa de ARAÚJO, M. ., da Silva SPONTON, A. C. ., PAULI, J. R. ., Ferreira de MOURA, R., & Rostom de MELLO, M. A. . (2023). Hepatic biochemical changes in rats submitted to a high-fat/high-energy diet. Brazilian Journal of Nutrition, 25(6). Retrieved from https://periodicos.puc-campinas.edu.br/nutricao/article/view/9307

Issue

Section

ORIGINAL ARTICLE