Effect of aqueous rosemary extract (Rosmarinus officinalis L.) on the oxidative stress of diabetic rats

Authors

  • Ana Mara de Oliveira e SILVA Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Nutrição Experimental.
  • Elma Regina Silva de ANDRADE-WARTHA Universidade Federal de Sergipe, Núcleo de Nutrição
  • Eliane Bonifácio Teixeira de CARVALHO Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Nutrição Experimental.
  • Alessandro de LIMA Instituto Federal de Educação, Ciência e Tecnologia
  • Alexis Vidal NOVOA Universidad de La Habana, Facultad de Biología.
  • Jorge MANCINI-FILHO Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Nutrição Experimental.

Keywords:

Antioxidants, Phenolic compounds, Mellitus diabetes, Enzymes, Rosemarinus

Abstract

Objective
This study assessed the effect of aqueous rosemary extract on the oxidative stress of diabetic rats.
Methods
Aqueous rosemary extract was obtained by the sequential method. Total phenolic content was determined by the Folin Ciocateau method and antioxidant activity in vitro was determined by the following methods: β-carotene/linoleic acid, 2,2 Difenil-1-Picril-hidrazil and oxygen radical absorbance capacity. Male Wistar rats were distributed into 5 groups: control, diabetic, and three groups of diabetic animals treated with aqueous rosemary extract in different concentrations: 25, 50 or 100mg/kg orally for 30 days. Diabetes was induced by streptozotocin and, at the end of the experiment, blood was collected to assess the percentage of glycated hemoglobin; liver and brain tissues were collected for the determination of the antioxidant enzymes: superoxide dismutase, catalase, glutatione peroxidase and glutatione reductase.
Results
Aqueous rosemary extract contains high levels of phenolic compounds and significant total antioxidant activity in vitro according to the three methods. Aqueous rosemary extract at a concentration of 50mg/kg decreased the percentage of glycated hemoglobin and increased the activity of glutatiose peroxidase and catalase enzymes in the liver and superoxide dismutase in the brain of diabetic rats. However, no dose-response effect was observed in the other concentrations.
Conclusion
Aqueous rosemary extract presented significant antioxidant capacity in vitro attributed to its high phenolic compound content. When administered to rats at a concentration of 50mg/kg, it proved to be efficient against the oxidative stress secondary to experimental diabetes.

References

Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004; 27(5):1047-53.

Rocha FD, Teixeira VL, Pereira RC, Kaplan MAC. Diabetes mellitus e estresse oxidativo: produtos naturais como alvo de novos modelos terapêuticos. Rev Bras Farm. 2006; 87(2):49-54.

Sociedade Brasileira de Diabetes. Consenso Brasileiro sobre Diabetes 2002: diagnóstico e classificação do diabetes melito e tratamento do diabetes melito do tipo 2. Rio de Janeiro; 2003 [acesso 2008 maio]. Disponível em: <http://neu.saude.sc.gov.br/arquivos/consenso_diabete_sbd_2002.pdf>

Packer L, Kraemer K, Rimbach G. Molecular aspects of lipoic acid in the prevention of diabetes complications. Nutrition. 2001; 17(10):888-95.

Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005; 54(6):1615-25.

Lapolla A, Fedele D, Traldi P. Glyco-oxidation in diabetes and related diseases. Clin Chim Acta. 2005; 357(2):236-50.

Rolo AP, Palmeira CM. Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol. 2006; 212(2):167-78.

Sengupta B, Swenson J. Properties of normal and glycated human hemoglobin in presence and absence of antioxidant. Biochem Biophys Res Commun. 2005; 334(3):954-9

Shimada S, Tanaka Y, Ohmura C, Tamura Y, Shimizu T, Uchino H, et al. N-(carboxymethyl)valine residues in hemoglobin (CMV-Hb) reflect accumulation of oxidative stress in diabetic patients. Diabetes Res Clin Pract. 2005; 69(3):272-8.

Bousová I, Martin J, Jahodár L, Dusek J, Palicka V, Drsata J. Evaluation of in vitro effects of natural substances of plant origin using a model of protein glycoxidation. J Pharm Biomed Anal. 2005; 37(5):957-62.

Sindhu RK, Koo J, Roberts CK, Vaziri ND. Dysregulation of hepatic superoxide dismutase, catalase and glutathione peroxidase in diabetes: response to insulin and antioxidant therapy. Clin Exp Hypertens. 2004; 26(1):43-53.

Aksoy N, Vural H, Sabuncu T, Arslan O, Aksoy S. Beneficial effects of vitamins C and E against oxidative stress in diabetic rats. Nutr Res. 2005; 25(6):625-30.

Balasubashini MS, Rukkumani R, Viswanathan P, Menon VP. Ferulic acid alleviates lipid peroxidation in diabetic rats. Phytother Res. 2004; 18(4):310-14.

Coskun O, Kanter M, Korkmaz A, Oter S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. Pharmacol Res. 2005; 51(2):117-23.

Yeh C, Yen G. Induction of hepatic antioxidant enzymes by phenolic acids in rats is accompanied by increased levels of multidrug resistanceassociated protein 3 mRNA expression. J Nutr. 2006; 136(1):11-15.

Almela L, Sánchez-Munoz B, Fernández-López JA, Roca MJ, Rabe V. Liquid chromatographic-mass spectrometric analysis of phenolics and free radical scavenging activity of rosemary extract from different raw material. J Chromatogr A. 2006; 1120(1):221-9.

Sotelo-Félix JI, Martinez-Fong D, Muriel P, Santillán RL, Castillo D, Yahuaca P. Evaluation of the effectiveness of Rosmarinus officinalis (Lamiaceae) in the alleviation of carbon tetrachloride-induced acute hepatotoxicity in the rat. J Ethnopharmacol. 2002; 81(2):145-54.

Amin A, Hamza AA. Hepatoprotective effects of Hibiscus, Rosmarinus and Salvia onazathioprineinduced toxicity in rats. Life Sci. 2005; 77(3):266-78.

Moreira AVB, Mancini-Filho J. Atividade antioxidante das especiarias mostarda, canela e erva-doce, em sistemas aquoso e lipídico. Nutrire. 2003; 25(3): 45-60

Swain T, Hills WE. The phenolic constituents of Punnus domestica. I-quantitative analysis of phenolic constituents. J Sci Food Agric. 1959; 10(1): 63-8.

Miller HE. Simplified method for evaluation of antioxidants. J Am Oil Chem Soc. 1971; 48(2):91.

Brand-Willians W, Cuvelier ME, Brest C. Use of free radical method evaluate antioxidant activity. Lebenson Wiss Technol. 1995; 28(1):25-30.

Ou B, Hampsch-Woodill M, Prior RL. Development and validation of am improved oxygem radical absorbance capacity assay using fluoescein as the fluorescent probe. J Agric Food Chem. 2001; 49(10):4619-26.

McCord JM, Fridovich I. Superoxide dismutase, an enzyme function for erythrhrocuprein (hemocuprein). J Biol Chem. 1969; 244(22): 6049-55.

Beutler E. Red cell metabolism: a manual of biochemical methods. 2nd ed. New York: Grune & Stratton; 1975

Sies H, Koch OR, Martino E, Boveris A. Increased biliary glutathione disulfide release in chronically ethanol treated rats. FEBS Lett. 1979; 103(2):287-90

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72:248-54.

Ninfali P, Mea G, Giorgini S, Rocchi M, Bacchioccal M. Antioxidant capacity of vegetables, spices and dressings relevant to nutrition. Br J Nutr. 2005; 93(2):257-66.

Del Bano MJ, Castillo J, Benavente-Garcia O, Lorente J, Martían-Gil R, Acevedo C, et al. Radioprotective-antimutagenic effects of rosemary phenolics against chromosomal damage induced in human lymphocytes by γ-rays. J Agric Food Chem. 2006; 54(6):2064-8.

Cintra RMGC. Efeito antioxidante de especiarias: avaliação da salsa (Petroselium sativum Hoffm), cebolinha verde (Allium shoenoprasum L.), orégano (Origanum vulgare L.) e alecrim (Rosmarinus officinalis L.) [mestrado]. São Paulo: Universidade de São Paulo; 1998.

Giada MLR, Mancini-Filho J. Avaliação da atividade antioxidante in vitro de compostos fenólicos de alimentos. Nutrire. 2004; 28(8):91-107.

Dorman HJD, Peltoketo A, Hiltunen R, Tikkanen MJ. Characterisation of the antioxidant properties of de-odourised aqueous extracts from selected Lamiaceae herbs. Food Chem. 2003; 83(2):255-62.

Bae JW, Lee MH. Effect and putative mechanism of action of ginseng on the formation of glycated hemoglobin in vitro. J Ethnopharmacol. 2004; 91(1):137-40.

Bousová I, Martin J, Jahodár L, Dusek J, Palicka V, Drsata J. Evaluation of in vitro effects of natural substances of plant origin using a model of protein glycoxidation. J Pharm Biomed Anal. 2005; 37(5): 957-62.

Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001; 414(6865):813-20.

Bravenboer B, Kappelle AC, Hamers FPT, Van Buren T, Erkelens DW, Gispen WH. Potential use of glutathione for the prevention and treatment of diabetic neuropathy in the streptozotocin-induced

Published

2023-08-23

How to Cite

SILVA, A. M. de O. e, ANDRADE-WARTHA, E. R. S. de ., CARVALHO, E. B. T. de ., LIMA, A. de, NOVOA, A. V. ., & MANCINI-FILHO, J. . (2023). Effect of aqueous rosemary extract (Rosmarinus officinalis L.) on the oxidative stress of diabetic rats. Brazilian Journal of Nutrition, 24(1). Retrieved from https://periodicos.puc-campinas.edu.br/nutricao/article/view/9282

Issue

Section

ORIGINAL ARTICLE