Effect of fatty Amazon fish consumption on lipid metabolism

Authors

  • Francisca das Chagas do Amaral SOUZA Instituto Nacional de Pesquisas da Amazônia
  • Nadja Pinto GARCIA Universidade Federal do Amazonas
  • Rejane Souza de Aquino SALES Universidade Federal do Amazonas
  • Jaime Paiva Lopes AGUIAR Instituto Nacional de Pesquisas da Amazônia
  • Wallice Luiz Paxiúba DUNCAN Universidade Federal do Amazonas
  • Rosany Piccolotto CARVALHO Universidade Federal do Amazonas

Keywords:

Amazon fishes, Diet, Lipid metabolism, Rats, wistar

Abstract

Objective
The present study aimed to evaluate the effect of feeding diets enriched with fatty fish from the Amazon basin on lipid metabolism.

Methods
Male Wistar rats were divided into four groups: control group treated with commercial chow; Mapará group was fed diet enriched with Hypophthalmus edentatus; Matrinxã group was fed diet enriched with Brycon spp.; and, Tambaqui group was fed diet enriched with Colossoma macropomum. Rats with approximately 240g±0.60 of body weight were fed ad libitum for 30 days, and then were sacrificed for collection of whole blood and tissues.

Results
The groups treated with enriched diets showed a significant reduction in body mass and lipogenesis in the epididymal and retroperitoneal adipose tissues and carcass when compared with the control group. However, lipogenesis in the liver showed an increase in Matrinxã group compared with the others groups. The levels of serum triglycerides in the treated groups with Amazonian fish were significantly lower than those of the control group. Moreover, total cholesterol concentration only decreased in the group Matrinxã. High Density Lipoprotein cholesterol levels increased significantly in the Mapará and Tambaqui compared with control group and Matrinxã group. The insulin and leptin levels increased significantly in all treatment groups.

Conclusion
This study demonstrated that diets enriched with fatty fish from the Amazon basin changed the lipid metabolism by reducing serum triglycerides and increasing high density lipoprotein-cholesterol in rats fed with diets enriched with Mapará, Matrinxã, and Tambaqui.

References

Lameu EB, de Oliveira GMM, Godoy PH, Cárcano CBM, Cárcano FM. Catabolismo muscular nos pa-cientes com infarto agudo do miocárdio. Rev SOCERJ. 2005; 18(2):137-40.

Geloneze B. Síndrome metabólica: mito ou reali dade? Arq Bra Endocrinol Metab. 2006; 50(3):409-11.

Assis MAA. Consulta de nutrição: controle e preven ção do colesterol elevado. Florianópolis: Insular; 1997.

Gonçalves RC, Faria KRM, Silva PI, Mattar Filho R, Malafaia G. Perfil lipídico e os fatores de risco para a doença aterosclerose em metalúrgicos de Quiri nópolis-GO. Enciclopédia Biosfera. 2012; 8(14): 1618-2012.

Ajayi OB, Ajayi DD. Effect of oilseed diets on plasma lipid profile in albino rats. Pakistan J Nutr. 2009; 8(2):116-8.

Leichsenring M, Sütterlin N, Less S, Bäuman K, Anninos A, Becker K. Polyunsaturated fatty acids in erythrocyte and plasma lipids of children with severe protein-energy malnutrition. Acta Pediatr. 1995; 84(5):516-20.

Estadella D, Oyama LM, Damaso AR, Ribeiro EB, Oller do Nascimento CM. Effect o palatable hyperlipidic diet in lipid metabolism os sedentary and exercised rats. Nutrition. 2004; 20(2):218-24.

Costa RP, Menendez G, Bricarello LP, Elias MC, Ito M. Óleo de peixe, fitosteróis, soja e antioxidantes: impacto nos lípides e na aterosclerose. Rev Soc Cardiol. 2000; 10(6):819-27.

Connor SL, Connor WE. Are fish oils beneficial in the prevention and treatment of coronary artery disease? Am J Clin Nutr. 1997; 66(Suppl):1020S-31S.

Xin W, Wei W, Li XY. Short-term effects of fish-oil supplementation on heart rate variability in humans: A meta-analysis of randomized controlled trials. Am J Clin Nutr. 2013; 97(5):926-35.

Robinson AM, Williamson DH. Control of glucose metabolism in isolated acini of the lactating mammary gland of rat: Effects of oleate on glucose utilization and lipogenesis. Biochem J. 1978; 170(3):609-13.

Stanbie D, Browsey RW, Crettaz M, Denton RM. Acute effects in vivo of anti-insulin serum on rates of fatty acid synthesis and activities of acetylcoenzyme a carboxylase and pyruvate dehydrogenase in liver and epididymal adipose tissue of fed rats. Biochem J. 1976; 160(2):413-26.

Oller do Nascimento CM, Williamson DH. Evidence for conservation of dietary lipid in the rat during lactation and the immediate period after removal of the litter. Biochem J. 1986; 239(1):233-6.

Johann G, Lentini EA. Simultaneous determination of glycogen and lipids from heart muscle. Anal Biochem. 1979; 43(1):183-7.

Abadie JM, Malcom GT, Porter JR, Svec F. Can associations between free fatty acid levels and metabolic parameters determine insulin resistance development in obese Zucker rats? Life Sci. 2001; 69(22):2675-83.

Gurnell M, Savage DB, Chatterjee VK, O’Rahilly S. The metabolic syndrome: Peroxisome proliferator activated receptor gamma and its therapeutic modulation. J Clin Endocrinol Metab. 2003; 88(6): 2412-21.

Gaíva MH, Couto RC, Oyama,LM, Couto GE, Silveira VL, Ribeiro EB, et al. Polyinsaturated fatty acid-rich diets: Effect on adipose tissue metabolism in rats. Br J Nutr. 2001; 86(3):371-7.

French S, Robinson T. Fats and food intake. Curr Opin Clin Nutr Metab Care. 2003; 6(6):629-34.

Beglinger C, Degen L. Fat in the intestine as a regulator of appetite-tole of CCK. Physiol Behav. 2004; 83(4):617-21.

Tso P, Liu M. Apolipoprotein A-IV, food intake, and obesity. Physiol Behav. 2004; 83(4):631-43.

Himaya A, Fantino M, Antoine JM, Brondel L, Louis Sylvestre J. Satiety power of dietary fat: A new apprasial. Am J Clin Nutr. 1997; 65(5):1410-8.

Keelan M, Clandinin MT, Thompson ABR. Refeeding varyning fatty acid and cholesterol diets alters phospholipids in rat intestinal brush border membrane. Lipids. 1997; 32(8):895-905.

Leonhardt M, Langhans W. Fatty acid oxidation and control of food intake. Physiol Behav. 2004; 83(4): 645-51.

National Cholesterol Education Program. Detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). Final report. Bethesed (MD): National Heart, Lung, and Blood Institute, 2002 Sept. Report nº 02-5215.

Nieves DJ, Cnop M, Retzlaff B, Walden CE, Brunzell JD, Knopp RH, et al. The atherogenic lipoprotein profile associated with obesity and insulin resistance is largely attributable to intra-abdominal fat. Diabetes. 2003; 52(4):172-9.

Suprijana O, Terpstra AHM, Van Lith HA, Van Tol A, Lemmens AG, Geelhoed-Mieras MM. Plasma lipids and apolipoproteins in rats fed diets with type of fat (fish oil versus corn oil) and fiber (pectin versus cellulose) as vaiables. Nutr Res. 1997; 17(7):1187-97.

Kim HK, Choi S, Choi H. Suppression of hepatic fatty acid synthase by feeding α-linolenic acid rich Perilla oil lowers plasma triacylglycerol level in rats. J Nutr Biochem. 2004; 15(8):485-92.

Brooks SP, Lampi BJ. Effects of dietary fat on whole body fatty aci syntesis in weanling rats. J Nutr. Biochem. 1999; 10(5):291-8.

Charman A, Muriithi EW, Milne E, Wheatley DJ, Armstrong RA, Belcher PR. Fish oil before cardiac surgery: Neutrophil activation is unaffected but myocardial damage is moderated. Prostaglandins Leukot Essent Fatty Acids. 2005; 72(4):257-65.

Singer P. Fluvastantin plus fish oil are more effective on cardiovascular risk factors than fluvastatin alone. Prostaglandins Leukot Essent Fatty Acids. 2005; 13(22):123-5.

Simão ANC, Godeny P, Lozovoy MAB, Dichi JB, Dich I. Efeito dos ácidos graxos n-3 no perfil glicêmico e lipídico, no estresse oxidativo e na capacidade an tioxidante total de pacientes com síndrome meta bólica. Arq Bra Endocrinol Metab. 2010; 54(5): 463-69.

Wilkinson P, Leach C, Ah-Sing EE, Hussain N, Miller GJ, Millward DJ, et al. Influence of alpha-linolenic acid and fish-oil on markers of cardiovascular risk in subjects with an atherogenic lipoprotein phenotype. Atherosclerosis. 2005; 181(1):115-24.

Moritz B, Wazlawik E, Minatti J, Miranda RCD. Interferência dos ácidos graxos ômega-3 nos lipí deos sangüíneos de ratos submetidos ao exercício de natação. Rev Nutr. 2008; 21(6):659-69. doi: 10.1590/S1415-52732008000600005

Iritani N, Sugimoto T, Fukuda H. Gene expression of leptin, insulin receptors and lipogenic enzymes are coordinately regulated by insulin and dietary fat in rats. J Nutr. 2000; 130(5):1183-8.

Nogalska A, Sucajtys-Szulc E, Swierczynski J. Leptin decreases lipogenic enzyme gene expression through modification of SREBP-1c gene expression in white adipose tissue of aging rats. Metabolism. 2005; 54(8):1041-7.

Downloads

Published

2023-04-13

How to Cite

das Chagas do Amaral SOUZA, F. ., Pinto GARCIA, N., Souza de Aquino SALES, R. ., Paiva Lopes AGUIAR, J., Paxiúba DUNCAN, W. L. ., & Piccolotto CARVALHO, R. (2023). Effect of fatty Amazon fish consumption on lipid metabolism. Brazilian Journal of Nutrition, 27(1). Retrieved from https://periodicos.puc-campinas.edu.br/nutricao/article/view/8292

Issue

Section

ORIGINAL ARTICLE