Oxidative stress and micronutrients in leprosy

Authors

  • Fabiana Maciel de OLIVEIRA Centro Universitário Católico Salesiano Auxilium
  • Fernando BARBOSA JÚNIOR Universidade de São Paulo
  • Alceu Afonso JORDÃO JÚNIOR Universidade de São Paulo
  • Norma Tiraboschi FOSS Universidade de São Paulo
  • Anderson Marliere NAVARRO Universidade Estadual Paulista Júlio de Mesquita Filho

Keywords:

Antioxidants, Oxidative stress, Leprosy, Micronutrients

Abstract

Objective
To determine the oxidative stress and the antioxidant and micronutrient profile of patients with multibacillary and paucibacillary leprosy before polychemotherapeutic treatment.

Methods
Thirty control samples and fifty-two serum samples from leprosy patients who attended the dermatology outpatient clinic of a public university hospital were analyzed; 38 of them had multibacillary and 14 paucibacillarty. Malondialdehyde, a marker of lipid peroxidation, was determined using the thiobarbituric acid reacting substances assay; the antioxidant reduced glutathione was determined using a method based on the quantification of acid-soluble thiol; the antioxidant vitamin E was determined using High-Performance Liquid Chromatography; the minerals selenium, zinc, copper and magnesium were determined using coupledmass spectrometry, and the serum phenol I glycolipid antibody was determined using Enzyme-Linked Immunosorbent Assay. The nonparametric Mann-Whitney test was used to compare the variables quantified in the present study between the different groups, and Pearson’s correlation analysis was used to verify the association between these variables and the antibody. The significance level was set at p<0.05.

Results
There was a significant difference in the content of malondialdehyde (p<0.001) and vitamin E (p<0.001) between the groups with multibacillary and paucibacillary leprosy (p=0.495 and p=0.920, respectively) and the control groups. Reduced glutathione levels were higher in the control group compared with those of the group with leprosy (p=0.012) and multibacillary leprosy (p=0.001), but did it not differ from that of the paucibacillary group (p=0.920). Reduced glutathione levels did not differ between the multibacillary and paucibacillary groups (p=0.063) either. All minerals were within normal limits, except for magnesium; magnesium deficiency was detected in all groups studied. No correlation was observed between the anti-phenolic glycolipid I antibody and the remaining variables.

Conclusion
Paucibacillary patients seem to have more pronounced reduced glutathione antioxidant defense, similar to that of healthy individuals. The low vitamin E levels of leprosy patients suggest the benefits of supplementation. The metabolic changes observed did not demonstrate an association with anti-phenolic glycolipid I serology. 

References

Crespor MJI, Gonçalves A, Padovani CR. Haseníase: pauci e multibacilares estão sendo diferentes? Rev Med. 2014; 47(1):43-50.

World Health Organization. Leprosy today. Washington (DC): WHO; 2015 [cited 2015 Apr 20]. Available from: http://www.who.int/mediacentre/ factsheets/fs101/en/

Marinho FD, Nardi SMT, Coutinho GC, Sime MM. Hanseníase em menores de 15 anos: uma revisão bibliográfica. Refacs. 2015; 3(2):95-105.

Pires CA, Malcher CMSR, Abreu Júnior JMC, Albuquerque TG, Correa IRS, Darbacher ELR. Leprosy in children under 15 years: The importance of early diagnosis. Rev Paul Pediatr. 2012; 30(2):292-5.

Ribeiro GC, Fabri ACOC, Amaral EP, Machado IE, Lana FCF. Estimativa da prevalência oculta da hanseníase na microrregião de Diamantina - Minas Gerais. Rev Eletr Enf. 2014; 16(4):728-35. http:// dx.doi.org/105216/ree.v16i4.22371

Cruz RCS, Cunha MGS, Vásquez FG. Prevalência de anticorpo anti PGL-1 em contatos domiciliares de pacientes com hanseníase. Cad Saúde Colet. 2009; 17(1):261-71.

Jyothi P, Riyaz N, Nandakumar G, Binitha MP. A study of oxidative stress in paucibacillary and multibacillary leprosy. Indian J Dermatol Venereol Leprol. 2008; 74(1):80.

Reddy YN, Murthy SV, Krishna DR, Prabhakar MC. Oxidative stress and anti-oxidant status in leprosy patients. Indian J Lepr. 2003; 75(4):307-16.

Bhadwat VR, Borade VB. Increased lipid peroxidation in lepromatous leprosy. Indian J Dermatol Venerol Leprol. 2000; 66(3):121-5.

Abdel-Hafez HZ, Mohamed EEM, Abd-Elghany AA. Tissue and blood superoxide dismutase activity and malondialdehyde level in leprosy. J Eur Acad Dermatol Venereol. 2009; 24(6):704-8.

Prasad CVB, Kodliwadmath MV, Kodliwadmath GB. Erythrocyte glutathione peroxidase, glutathione reductase activities and blood glutathione content in leprosy. J Infect. 2008; 56(6):469-73.

Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978; 52(1):302-10.

Sedlak J, Lindsay RH. Estimation of total, protein bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968; 25(1):192-205.

Arnaud J, Fortis I, Blachier S, Kia D, Favier A. Simultaneous determination of retinol, alpha tocopherol and beta-carotene in serum by isocratic high-performance liquid chromatography. J Chromatogr. 1991; 572(1-2):103-16.

Buhrer-Sekula S, Sarno EN, Oskam L, Koop S, Wichers I, Nery JA, et al. Use of ML dipstick as a tool to classify leprosy patients. Int J Lepr Other Mycobact Dis. 2000; 68(4):456-63.

Nunes JA. Desenvolvimento de método para determinação de Ag, As, Cd, Co, Mn, Ni, Pb e Se em sangue por espectrometria de massas com fonte de plasma acoplado indutivamente (ICP-MS) utilizando diluição das amostras em meio alcalino [doutorado]. Ribeirão Preto: Universidade de São Paulo; 2009.

Rukgauer M, Klein J, Kruse-Jarres JD. Refrence values for the trace elements copper, manganese, selenium, and zinc in the serum/plasma of children, adolescents and adults. J Trace Elem Med Biol. 1997; 11(2):92-8.

Young DS. Implementation of SI units for clinical laboratory data: Style specifications and conversion tables. Ann Intern Med. 1987; 106(1):10-35.

Papp LV, Holmgren A, Khanna KK. Selenium and selenoproteins in health and disease. Antioxid Redox Signal. 2010; 12(7):793-5.

Barreiros ALBS, David JM, David JP. Estresse oxidativo: relação entre geração de espécies reativas e defesa do organismo. Quím Nova. 2006; 29(1):113-23.

Girish S. Role of antioxidant vitamins in immune function in leprosy. IJCP. 2011; 2(8):1-3.

Rao KN, Saha K. Undernutrition and lepromatous leprosy: Serum vitamin A and E levels in leprosy spectrum. Indian J Lep. 1988; 60(1):66-70.

Wang GQ, Lin MY. Serum trace element levels in tuberculous pleurisy. Biol Trace Elem Res. 2011; 141(1-3):86-90.

George J, Bhatia VN, Balakrishnan S, Ramu G. Serum zinc/copper ratio in subtypes of leprosy and effect of oral zinc therapy on reactional states. Int J Lepr Other Mycobact Dis. 1990; 59(1):20-4.

Manthur NK, Sharma M, Mangal HN, Rai SML. Serum zinc levels in subtypes of leprosy. Inter J Lepr. 1984; 52(3):327-30.

Rao KN, Gupta JD, Sehgal VN, Chakrabarti AK, Saha K. Trace elements in the sera of leprosy spectrum. Indian J Lepr. 1985; 57(3):556-61.

Liu BY, Bu XM, Wang GQ. Trace elements analysis of urine and hair in tuberculous pleurisy. Biol Trace Elem Res. 2011; 143(3):1319-24.

Mennen U, Howells C, Wiese AJ. Serum zinc, sodium, calcium, magnesium and potassium levels and standard diet in leprosy patients. Indian J Lepr. 1993; 65(4):415-21.

Jain A, Mukherjee A, Chattopadhya D, Saha K. Biometals in skin and sera of leprosy patients and their correlation to trace element contents of M. leprae and histological types of the disease: A comparative study with cutaneous tuberculosis. Inter J Lepr Other Mycobact Dis. 1995; 63(2): 249-58.

Foster R, Sanchez A, Foulkes J, Cameron LJ. Profile of blood elements in leprosy patients. Indian J Lepr. 1991; 63(1):12-33.

Costa NMB. Minerais. In: Costa NMB, Peluzio MCG. Nutrição básica e metabolismo. Viçosa: UFV; 2008.

Mafra D, Cozzolino SMF. Importância do zinco na nutrição humana. Rev Nutr. 2004; 17(1):79-87. http://dx.doi.org/10.1590/S1415-52732004000 100009

Sher R, Shulman G, Path MRC, Baily P, Politzer WM. Serum trace elements and vitamin A in leprosy subtypes. Am J Clin Nutr. 1981; 34(9):1918-24.

Nigam P, Mukhija RD, Agrawal AK, Sati TR, Kapoor KK. Serum cations (calcium and magnesium) in leprosy. Indian J Lepr. 1985; 57(3):529-33. http:// dx.doi.org/10.1007/s12028-008-9068-9

Tam M, Gomez S, Gonzalez-Gross M, Marcos A. Possible roles of magnesium on the immune system. Eur J Clin Nutr. 2003; 57(10):1193-7.

Brilla LR 2012. Magnesium influence on stress and immune function in exercise. J Sports Med Doping Stud. 2012; 2(3):1-3. http://dx.doi.org/10.4172/ 2161-0673.1000111

Macêdo EMC, Amorim MAF, Silva ACS, Castro CMMB. Efeitos da deficiência de cobre, zinco e magnésio sobre o sistema imune de crianças com desnutrição grave. Rev Paul Pediatr. 2010; 28(3): 329-36. http://dx.doi.org/10.1590/S0103-0582201 0000300012

Vijayaraghavan R, Suribabu CS, Sekar B, Oommen PK, Kavithalakshmi SN, Madhusudhanan N, et al. Protective role of vitamin E on the oxidative stress in Hansen’s disease (Leprosy) patients. Eur J Clin Nutr. 2005; 59(10):1121-8.

Rimoli LF. Efetividade da vitamina E na redução do estresse oxidativo em hansenianos da forma multi bacilar sob tratamento [doutorado]. São José do Rio Preto: Faculdade de Medicina de São José do Rio Preto; 2006.

Published

2023-04-05

How to Cite

Maciel de OLIVEIRA, F., BARBOSA JÚNIOR, F., JORDÃO JÚNIOR, A. A., Tiraboschi FOSS, N., & NAVARRO, A. M. (2023). Oxidative stress and micronutrients in leprosy. Brazilian Journal of Nutrition, 28(4). Retrieved from https://periodicos.puc-campinas.edu.br/nutricao/article/view/8232

Issue

Section

ORIGINAL ARTICLE