Composition of a maternal high fat diet rich in satured fats and omega 3 in gestation and lactation for studies with rodents
Keywords:
Alpha-linolenic acid, Fatty acids, Nutritional requirements, RatsAbstract
Objective
To prepare a high fat diet rich in satured fatty acids and supplemented with omega 3 for experimental studies in rodents
Methods
Purified industrial ingredients and flaxseed oil as a source of omega 3 at a concentration of 3.5% (v/w) were used in the elaboration of the diets. Centesimal and nutritional compositions, fatty acids profile and dietary intake were evaluated. Serum levels of total protein, albumin, cholesterol and glucose in pregnant rats were verified. The offspring were assessed with regard to body mass and waist circumference. Statistical analysis was performed using the Kolmogorov-Smirnov, Anova One-Way test and Bonferroni post-test.
Results
High fat and high fat with omega 3 diets presented, respectively, 37% and 36% saturated fat, and the lipid amount was 80% higher than the American Institute of Nutrition 93G control diet. The omega 3 content was 50% higher in the high fat with omega 3 diet. There was no difference in consumption of diet types in weight (grams). The dams that received the High fat diet developed hypercholesterolemia and their High fat offspring exhibited higher body mass on the 1st day of life and increased abdominal circumference on the 30th day of life compared to the control and the high fat with omega 3 offspring.
Conclusion
The formulated diets with a higher amount of saturated fatty acids meet the nutritional requirements of the gestation and lactation period. The high fat diet with omega 3 was able to attenuate the changes observed in dams and their offspring.
References
Kereliuk SM, Brawerman GM, Dolinsky VW. Maternal macronutrient consumption and the developmental origins of metabolic disease in the offspring. Int J Mol Sci. 2017;18(7):1-27. http://dx.doi.org/10.3390/ijms18071451
Desai M, Jellyman JK, Han G, Beall M, Lane RH, Ross MG. Maternal obesity and high-fat diet program offspring metabolic syndrome. Am J Obstet Gynecol. 2014;211(3):237.e1-237.e13. http://dx.doi.org/10.1016/j.ajog.2014.03.025
Correia-Santos AM, Suzuki A, Vicente GC, Anjos JS, Pereira AD, Lenzi-Almeida KC, et al. Effect of maternal use of flaxseed oil during pregnancy and lactation on glucose metabolism and pancreas histomorphometry of male offspring from diabetic rats. Diabetes Res Clin Pract. 2014;106(3):634-42. http://dx.doi.org/10.1016/j.diabres.2014.09.022
Correia-Santos AM, Vicente GC, Suzuki A, Pereira AD, Anjos JC, Lenzi-Almeida KC, et al. Maternal use of flaxseed oil during pregnancy and lactation prevents morphological alterations in pancreas of female offspring from rat dams with experimental diabetes. Int J Exp Pathol. 2015;96(2):94-102. http://dx.doi.org/10.1111/iep.12126.
Gajda AM, Pellizzon MA, Ricci MR, Ulman EA. Diet-induced metabolic syndrome in rodent models. Animal Lab News. 2007;74:775-93.
Reeves PG, Nielsen FH, Fabey GC. AIN-93 purified diets for laboratory rodents: Final report of The American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr. 1993;123(11):1939-51.
Reeves PG. Components of the AIN-93 diets as improvements in the AIN-76A diet. J Nutr. 1997;127(5):838-41. http://dx.doi.org/10.1093/jn/127.5.838S
Wierzejska R, Jarosz M, Wodja B, Siuba-Strzelinska M. Dietary intake of DHA during pregnancy: A significant gap between the actual intake and current nutritional recommendations. Rocz Panstw Zakl Hig. 2018;69(4):381-6. http://dx.doi.org/10.32394/rpzh.2018.0044
Almeida CAN, Ribas Filho D, Mello ED, Bertolucci PHF, Falcão MC. I Consenso da Associação Brasileira de Nutrologia sobre recomendações de DHA durante a gestação, lactação e infância. Int J Nutri. 2014;7(3):4-13.
Akerele OA, Cheema SK. A balance of omega 3 and omega 6 polyunsaturated fatty acids is important in pregnancy. J Nutr Intermed Metab. 2016;30:1-11. http://dx.doi.org/10.1016/j.jnim.2016.04.008
Leikin-Frenkel A, Shomonov-Wagner L, Juknat A, Pasmanik-Chor M. Maternal diet enriched with α-Linolenic or saturated fatty acids differentially regulates gene expression in the liver of mouse offspring. J Nutrigenet Nutrigenomics. 2015;8(4-6):185-94. http://dx.doi.org/10.1159/000442945
Pereira-da-Silva L, Cabo C, Moreira AC, Papoila AL, Virella D, Neves R, et al. The effect of long-chain polyunsaturated fatty acids intake during pregnancy on adiposity of healthy full-term offspring at birth during pregnancy on adiposity of healthy full-term offspring at birth. J Perinatol. 2015;35(3):177-80. http://dx.doi.org/10.1038/jp.2014.188
Mennitti LV, Oliveira JL, Morais CA, Estadella D, Oyama LM, Nascimento CMO, et al. Type of fatty acids in maternal diets during pregnancy and/or lactation and metabolic consequences of the offspring. J Nutr Biochem. 2015;26(2):99-111. http://dx.doi.org/10.1016/j.jnutbio.2014.10.001
Llopis M, Sánchez J, Priego T, Palou A, Picó C. Maternal fat supplementation during late pregnancy and lactation influences the development of hepatic steatosis in offspring depending on the fat source. J Agric Food Chem. 2014;62(7):1590-601. http://dx.doi.org/10.1021/jf405161e
Farias HG. Considerações sobre dietas experimentais para animais de laboratório: formulações, aplicações, fornecimento e efeitos experimentais. I Simpósio de Bioterismo da Fiocruz; 2010; Out. 29; Recife. Recife: Fiocruz; 2011.
Cavalcante TCF, Silva JML, Silva AAM, Muniz GS, Luz Neto LM, Souza SL, et al. Effects of a westernized diet on the reflexes and physical maturation of male rat offspring during the perinatal period. Lipids. 2013;48(11):1157-68. http://dx.doi.org//10.1007/s11745-013-3833-z
Association of Official Analytical Chemists. Official methods of analysis of the Association of the Analytical Chemists. 16th ed. Washington: The Association; 1995.
Kai M, Miyoshi M, Fujiwara M, Nishiyama Y, Inoue T, Maeshige N, et al. A lard-rich high-fat diet increases hepatic peroxisome proliferator-activated receptors in endotoxemic rats. J Surg Res. 2017;15(212):22-32. http://dx.doi.org/10.1016/j.jss.2016.11.048
Bautista RJH, Mahmoud AM, Königsberg M, Guerrero NELD. Obesity: Pathophysiology, monosodium glutamate-induced model and antiobesity medicinal plants. Biomed Pharmacother. 2019;111:503-16. http://dx.doi.org/10.1016/j.biopha.2018.12.108
Harant-Farrugia I, Garcia J, Iglesias-Osma MC, Garcia-Barrado MJ, Carpéné C. Is there an optimal dose for dietary linoleic acid? Lessons from essential fatty acid deficiency supplementation and adipocyte functions in rats. J Physiol Biochem. 2014;70(2):615-27. http://dx.doi.org/10.1007/s13105-014-0315-6
Parikh M, Netticadan T, Pierce GN. Flaxseed: Its bioactive components and their cardiovascular benefits. Am J Physiol Heart Circ Physiol. 2018;314(2):146-59. http://dx.doi.org/10.1152/ajpheart.00400.2017
Barroso AKM, Torres AG, Castelo-Branco VN, Ferreira A, Finotelli PV, Freitas SP, et al. Linhaça marrom e dourada: propriedades químicas e funcionais das sementes e dos óleos prensados a frio. Ciênc Rural. 2014;44(1):181-7. http://dx.doi.org/10.1590/S0103-84782014000100029
Gonçalves NB, Bannitz RF, Silva BR, Becari DD, Poloni C, Gomes PM, et al. a-Linolenic acid prevents hepatic steatosis and improves glucose tolerance in mice fed a high-fat diet. Clinics. 2018;73:e150.1-9. http://dx.doi.org/10.6061/clinics/2018/e150
Bloise AMNLG, Alves DS, Silva LML, Rocha Júnior RL, Silva JHC. Avaliação dos parâmetros bioquímicos da prole de mães submetidas à dieta hiperlipídica suplementada com ômega 3 durante gestação e lactação. Anais do III Congresso Brasileiro de Ciências da Saúde; 2018 Jun; Campina Grande. Campina Grande: Editora Realize; 2018(1):1-9.
Kakimoto PA, Kowaltowski AJ. Effects of high fat diets on rodent liver bioenergetics and oxidative imbalance. Redox Biol. 2016;8:216-25. http://dx.doi.org/10.1016/j.redox.2016.01.009
Carvalho MF, Costa MKME, Muniz GS, Castro RM, Nascimento E. Experimental diet based on the foods listed in the family budget survey is more detrimental to growth than to the reflex development of rats. Rev Nutr. 2013;26(2):177-93. http://dx.doi.org/10.1590/S1415-52732013000200006
Dias TMS, Carvalho JAS, Freitas TEC, Aguiar JRS, Silva MCM, Sales ALCC, et al. Ângulo de fase e sua relação com albumina e risco nutricional em pacientes hospitalizados. Braspen J. 2018 [citado 6 Out 2019];33(2):188-93. Disponível em: https://pesquisa.bvsalud.org/portal/resource/pt/biblio-910158
Alves JLB, Nogueira VO, Oliveira GB, Silva GS, Wanderley AG, Leandro CG, et al. Short and long-term effects of a maternal low-protein diet on ventilation, O2/CO2 chemoreception and arterial blood pressure in male rat offspring. Br J Nutr. 2014;111(4):606-15. http://dx.doi.org/10.1017/S0007114513002833
Zulkafli IS, Waddell BJ, Mark PJ. Postnatal dietary omega-3 fatty acid supplementation rescues glucocorticoidprogrammed adiposity, hypertension, and hyperlipidemia in male rat offspring raised on a high-fat diet. Endocrinology. 2013;154(9):3110-7. http://dx.doi.org/10.1210/en.2013-1153
Backes J, Anzalone D, Hilleman D, Catini J. The clinical relevance of omega 3 fatty acids in the management of hypertriglyceridemia. Lipids Health Dis. 2016;15(1):118:1-12. http://dx.doi.org/10.1186/s12944-016-0286-4
Tellechea ML, Mensegue MF, Pirola CJ. The association between high fat diet around gestation and metabolic syndrome-related phenotypes in rats: A systematic review and meta-analysis. Sci Rep. 2017;7(1):5086:1-8. http://dx.doi.org/10.1038/s41598-017-05344-7
Oosting A, Kegler D, Van der Heijning BJ, Verkade HJ, Van der Beek EM. Reduced linoleic acid intake in early postnatal life improves metabolic outcomes in adult rodents following a Western-style diet challenge. Nutr Res. 2015;35(9):800-11. http://dx.doi.org:10.1016/j.nutres.2015.06.010
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Laura Mata de Lima SILVA, Aline Maria Nunes de Lira Gomes BLOISE, Danilo Augusto Ferreira FONTES, Katarynna Santos de ARAÚJO, Mariana Oliveira BARBOSA, João Henrique COSTA-SILVA
This work is licensed under a Creative Commons Attribution 4.0 International License.