A linhaça (Linum usitatissimum) como fonte de ácido α-linolênico na formação da bainha de mielina
Palavras-chave:
Ácidos graxos essenciais, Alimentos funcionais, Linhaça, MielinaResumo
A linhaça (Linum usitatissimum) é uma semente oleaginosa que tem sido estudada por seus efeitos benéficos à saúde. É considerada um alimento funcional, pelo fato de ser uma fonte natural de fitoquímicos, e por conter o ácido graxo α-linolênico (C18:3 n-3), que pode ser metabolicamente convertido nos ácidos docosaexahenóico (C22:6 n-3) e eicosapentaenóico (C20:5 n-3), sendo o primeiro essencial para o desenvolvimento do sistema nervoso central. Durante o crescimento do cérebro, há uma grande incorporação do ácido docosaexahenóico, que tem papel importante na formação de suas membranas celulares. Diante disto, esta comunicação visa a abordar os prováveis mecanismos pelos quais o ácido docosaexahenóico, proveniente do ácido α-linolênico presente abundantemente na semente de linhaça, interfere na formação da bainha de mielina, assim como relatar a técnica mais adequada para visualização desta bainha.
Referências
Rodrigues-Cruz M, Tovar PAR, Del Prado M, Torres VTN. Molecular mechanisms of action and health benefits of polynsaturated fatty acids. Rev Invest Clin. 2005; 57(3):457-72.
Callegaro D. Esclerose múltipla. In: Nitrimi R, Bachesch AL, editores. A Neurologia que todo médico deve saber. São Paulo: Atheneu; 2003.
Edmond J, Higa TA, Korsak RA, Berner EA, Lee WN. Fatty acid transport and utilization for the developing brain. J Neurochem. 1998; 70(3): 1227-34.
Arbukle LD, Innis SM. Docosahexaenoic acid is transferred through maternal diet to milk to tissues of natural milk-fed piglets. J Nutr. 1993; 123(10): 1668-75.
Marbois BN, Ajie HO, Korsak RA , Sensharma DK, Edmond J. The origin of palmitic acid in brain of the developing. Lipids. 1992; 27(8):587-92.
Dils RR. Mammary glands. In: Snyder F, editor. Lipid metabolism in mammals. New York: Plenum Press; 1977. v.2.
Innis SM. Essential fatty acids in growth and development. Prog Lipid Res. 1991; 30(1):39-103.
Carlson S. LCPUFA and functional development of pattern and term infants. In: Bindels JG, Goedhart AC, Visser HKA, editors. Recent developments in infant nutrition. Dordrecht: Kluwer Academic Publishers; 1996.
Cohen SL, Ward WE. Flaxseed oil and bone development in growing male and female mice. J Toxicol Environ Health A. 2005; 68(21):1861-70.
Turatti JM. Óleos vegetais como fonte de alimentos funcionais. Óleos & Grãos, 2000; 56:20-7.
Turatti JM. A importância dos ovos numa dieta saudável. Óleos e Grãos. 2000; 56:20(2):20-7.
Gómez MEDB. Modulação da composição de ácidos graxos poliinsaturados ômega 3 de ovos e tecidos de galinhas poedeiras, através da dieta I. Estabilidade oxidativa [tese]. São Paulo: Universidade de São Paulo; 2003.
Salem JN. Introduction to polyunsatured fatty acids. Background. 1999; 3(1):1-8.
Harper CR, Edwards MJ, De Filipis AP, Jacobson TA. Flaxseed oil increases the plasma concentrations of cardioprotective (n-3) fatty acids in humans. J Nutr. 2006; 136(1):83-7.
Description and Composition of flax. In: Diane H, editor. Flax: a health and nutrition primer. Canadá: 2008 [cited 2008 May 19]. Available from: <http://www.flaxcouncil.ca/english/index.php?p=primer&mp=nutrition>.
Carter JF. Potential of flaxseed and flaxseed oil in baked goods and other products in human nutrition. Cereal Foods World. 1993; 38(10): 753-9.
Caragay AB. Cancer-preventive foods and ingredients. Food Technol. 1998; 52(6):44-9.
Prasad K. Dietary flax seed in prevention of hypercholesterolemic atherosclerosis. Atherosclerosis. 1997; 132(1):69-76.
Yuan YV, Rickard SE, Thompson LU. Short-term feeding of flaxseed or its lignan has minor influence on in vivo hepatic antioxidant status in young rats. Nutr Res.1999; 19(8):1233-43.
Shukla, VKS. Wanasundara PKJPD, Shahidi F. Natural antioxidants from oilseeds. In: Shahidi F, editor. Natural antioxidants: chemistry, health effects and application. Champaign: AOCS Press; 1997.
Arjmandi BH, Khan DA, Juma S, Drum ML, Venkatesh S, Sohn E, et al. Whole flaxseed consumption lowers serum LDL-cholesterol and lipoprotein concentrations in postmenopausal women. Nutr Res.1998; 18(7):1203-14.
Cunnane SC, Ganguli S, Menard C, Liede AC, Hamadeh MJ, Chen Z, et al. High alfa-linolenic acid flaxseed: some nutritional properties in humans. J Nutr. 1993; 69(2):443-53.
Yuan YV, Rickard SE, Thompson LU. Short-term feeding of flaxseed or its lignan has minor influence on in vivo hepatic antioxidant status in young rats. Br Nutr Res.1999; 19(8):1233-43.
Garcia DJ. Omega-3 long-chain PUFA nutraceuticals. Food Technol. 1998; 52(6):44-9.
Oomah BD, Kenaschuck EO, Mazza G. Phenolic acids in flaxseed. J Agric Food Chem. 1995; 43(8): 2016-9.
Cunnane SC, Ganguli S, Menard C, Liede AC, Hamadeh MJ, Chen Z, et al. High alfa-linolenic acid flaxseed: some nutritional properties in humans. Br J Nutr. 1993; 69(2):443-53.
Simopoulos AP, Leaf A, Salem Jr N. Workshop on the essentiality of and recommended dietary intakes for omega-6 anda omega-3 fatty acids. J Am Coll Nutr. 1999; 18(5):487-9.
Lisboa AQ. Estado nutricional e ácidos graxos plasmáticos de pacientes com câncer de colo uterino [mestrado]. Brasília: Universidade de Brasília; 2006.
Wiesenfeld PW, Babu US, Collins TFX, Sprando R, O’Donenell MW. Flaxseed increased alfa-linolenic and eicosapentaenoic acid and decreased arachidonic acid in serum and a tissues of rat dams and offspring. Food Chem Toxicol. 2003; 41(6): 841-55.
Hartvigsen M, Mu H, Hoy C. Influence of maternal dietary n-3 fatty acids on breast milk and liver lipids of rat dams offspring-a preliminary study. Nutr Res. 2003; 23(6):747-60.
Prasad K, Mantha SV, Muir AD, Westcott ND. Reduction of hypercholesterolemic atherosclerosis by CDC-flaxseed with very low alpha-linolenic acid. Atherosclerosis.1998; 136(2):367-75.
Thomas CC, editor. Development of the brain: biological and functional perspective. Springfield (IL): Plenum Press.
Roux JF, Yoshioka T. Lipid metabolism in the fetus during development. Clin Obstet Gynecol. 197; 13(3):590-5.
Dobbing J, Sands J. Quantitative growth and development of the human brain. Arch Dis Child.1973; 14(10):757-67.
Miller RH, Lasek RJ. Cross-bridges mediate anterograde and retrograde vesicle transport along microtubules in squid axoplasm. J Cell Biol. 1985; 101:2181-93.
Rudick RA. Disease modifying drugs for relapsing: remitting multiple sclerosis and future directions for multiples sclerosis therapeutics. Arch Neurol. 1999; 56(9):1079-84.
Matuhara AM, Naganuma M. Manual instrucional para aleitamento materno de recém-nascidos pré-termo. São Paulo: 2006 [acesso 2008 maio 20]. Disponível em: <http://pediatriasaopaulo.usp.br/upload/html/1163/body/02.htm>.
Moura AS, Franco Sá CCN, Cruz HG, Costa CL. Malnutrition during lactation as a metabolic imprinting factor inducing the feeding pattern of
offspring rats when adults. The role of insulin and leptin. Braz J Med Biol Res. 2002; 35(5):617-22.
Dutta-Roy AK. Fatty acid transport and metabolism in the feto-placental unit and the role of fatty acid-binding proteins. J Nutr Biochem. 1997; 8(10): 548-57.
Dutta-Roy AK. Fatty acid transport and metabolism in the feto-placental unit and the role of fatty acidbinding proteins. J Nutr Biochem. 1997; 8(10): 548-57.
Kumar V, Abbas AS, Fausto N. Robbins e Cotran: patologia: bases patológicas das doenças. São Paulo: Elselvier; 2005.
Sunderland S. The capacity of regeneration axons to bridge long gaps in nerves. J Comp Neurol. 1953; 99(3):481-93.
Universidade Federal de Minas Gerais. Minas Gerais; 2006 [acesso 2006 jul 11]. Disponível em:<http://www.icb.ufmg.br/~biocelch/metodos_estudo/metodos.html>.
Neuropatologia e Neuroimagem. São Paulo, 2006 [acesso 2006 jul 11]. Disponível em: <http://anapat.unicamp.br/nervnormal.html>.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Kátia Calvi Lenzi de ALMEIDA, Gilson Teles BOAVENTURA, Maria Angélica GUZMAN-SILVA
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.