Pacientes com Síndrome Pós-Covid-19 apresentam risco de desnutrição e obesidade
achados de um ambulatório de seguimento
Palavras-chave:
Infecções por Coronavirus, Estado funcional, Músculos, Avaliação nutricionalResumo
Objetivo
Avaliar o estado nutricional, status funcional, alterações de deglutição e manifestações musculoesqueléticas de pacientes com Síndrome Pós-Covid-19, estratificados pelo Índice de Massa Muscular Esquelética Apendicular.
Métodos
Estudo transversal composto por pacientes diagnosticados com a Síndrome Pós-Covid-19 que estiveram internados na Unidade de Terapia Intensiva de um hospital universitário. Os desfechos avaliados foram: estado nutricional (Mini Avaliação Nutricional; bioimpedância e antropometria), alterações de deglutição (Protocolo Fonoaudiológico de Avaliação do Risco de Disfagia), status funcional (Post-Covid-19 Functional Status Scale) e manifestações musculoesqueléticas. Os pacientes foram classificados, quanto à perda de massa muscular conforme o Índice de Massa Muscular Esquelética Apendicular, em grupo sem e com perda de massa muscular.
Resultados
Foram inseridos no estudo 38 pacientes, 20 no grupo sem perda de massa muscular (17 deles do sexo feminino; 49,45±12,67 anos) e 18 no grupo com perda de massa muscular (todos do sexo masculino; 61,89±12,49 anos). Os pacientes de ambos os grupos apresentaram risco de desnutrição (escores Mini Avaliação Nutricional entre 17-23.5 pontos; Grupo Sem Perda de Massa Muscular: 21,82±3,93; Grupo Com Perda de Massa Muscular: 23,33±3,41) e obesidade (Grupo Sem Perda de Massa Muscular: 33,76±6,34; Grupo Com Perda de Massa Muscular: 30,23±3,66). Os grupos diferiram quanto aos parâmetros da bioimpedância (exceto massa gorda) e idade. Entretanto, não foram observadas diferenças na deglutição, status funcional e manifestações musculoesqueléticas.
Conclusão
Os pacientes com Síndrome Pós-Covid-19, estratificados conforme o Índice de Massa Muscular Esquelética Apendicular, apresentaram risco de desnutrição e obesidade. Destaca-se a persistência de fadiga, fraqueza, mialgia e artralgia após seis meses da alta hospitalar. Esses achados ressaltam a importância do cuidado integral ao paciente com a Síndrome Pós-Covid-19.
Referências
Bienvenu LA, Noonan J, Wang X, Peter K. Higher mortality of COVID-19 in males: sex differences in immune response and cardiovascular comorbidities. Cardiovasc Res. 2020;00:1-10. https://doi:10.1093/cvr/cvaa284
Hendren NS, Lemos JA, Ayers C, Das SR , Rao A, Carter S, et al. Association of body mass index and age with morbidity and mortality in patients hospitalized with COVID-19 results from the American Heart Association COVID-19 cardiovascular disease registry. Circulation. 2021;143:135-144. https://doi:10.1161/CIRCULATIONAHA.120.051936
Jayanama K, Srichatrapimuk S, Thammavaranucupt K, Kirdlarp S, Suppadungsuk S, Wongsinin T, et al. The association between body mass index and severity of coronavirus disease 2019 (COVID-19): a cohort study. Plos One, 2021;16(2):e0247023. https://doi.org/10.1371/journal.pone.0247023
Yang J, Zheng Ya, Goua X, Pu Ke, Chen Z, Guo Q, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91-5. https://doi.org/10.1016/j. ijid.2020.03.017
Poros B, Becker-Pennrich AS, Sabel B, Stemmler HJ, Wassilowsky D, Weig T, et al. Anthropometric analysis of body habitus and outcomes in critically ill COVID-19 patients. Obes Med. 2021;25:e100358. https://doi.org/10.1016/j. obmed.2021.100358
Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. Jama. 2020;323(20):2052-59. https://doi.org/10.1001/jama.2020.6775
Ranzani OT, Bastos LSL, Gelli JGM, Marchesi JF, Baião F, Hamacher S, et al. Characterisation of the first 250 000 hospital admissions for COVID-19 in Brazil: a retrospective analysis of nationwide data. Lancet Respir Med. 2021;9:407-18. https://doi.org/10.1016/S2213-2600(20)30560-9
Anker MS, Landmesser U, Haehling SV, Butler J, Coats AJS, Anker SD. Weight loss, malnutrition, and cachexia in COVID-19: facts and numbers. J Cachexia Sarcopenia. 2021;12:9-13. https://doi.org/10.1002/jcsm.12674
Ali AM, Kunugi H. Skeletal muscle damage in COVID-19: a call for action. Medicina. 2021;57(4):37257-372. https:// doi.org/10.3390/medicina57040372
Di Filippo L, De Lorenzo R, D’Amico M, Sofia V, Roveri L, Mele R, et al. COVID-19 is associated with clinically significant weight loss and risk of malnutrition, independent of hospitalisation: a post-hoc analysis of a prospective cohort study. Clin Nutr. 2021;40(4):2420-26. https://doi.org/10.1016/j.clnu.2020.10.043
Pourhassan M, Cederholm T, Trampisch U, Volkert D, Wirth R. Inflammation as a diagnostic criterion in the GLIM definition of malnutrition – what CRP-threshold relates to reduced food intake in older patients with acute disease? Eur J Clin Nutr. 2022;76:397-400. https://doi.org/10.1038/s41430-021-00977-4
Gobbi M, Brunani A, Arreghini M, Baccalaro G, Dellepiane D, La Vela V, et al. Nutritional status in post SARS-Cov2 rehabilitation patients. Clin Nutr. 2021. https://doi.org/10.1016/j.clnu.2021.04.013
Piotrowicz K, Gąsowski J, Michel JP, Veronese N. Post-COVID-19 acute sarcopenia: physiopathology and management. Aging Clin Exp Res. 2021;33(10):2887-98. https://doi.org/10.1007/s40520-021-01942-8
Hoyois A, Ballarin A, Thomas J, Lheureux O, Preiser J, Coppens E, et al. Nutrition evaluation and management of critically ill patients with COVID-19 during post–intensive care rehabilitation. J Parenter Enteral Nutr. 2021;45(6):1153-63. https://doi.org/10.1002/jpen.2101
Barazzoni R, Bischoff SC, Boirie Y, Busetto L, Cederholm T, Dicker D, et al. Sarcopenic obesity: time to meet the challenge. Clin Nutr. 2018;37:1787-93. https://doi.org/10.1016/j.clnu.2018.04.018
National Institute for Health and Care Excellence (NICE), Scottish Intercollegiate Guidelines Network (SIGN), Royal College of General Practitioners (RCGP). COVID-19 rapid guideline: managing the longterm effects of COVID-19. London: Institute; 2022 [cited 2022 Mar 15]. Available from: https://www.nice.org.uk/guidance/ng188/resources/ covid19-rapid-guideline-managing-the-longterm-effects-of-covid19-pdf-51035515742
Beghetto MG, Luft VC, Mello ED, Polanczyk CA. Accuracy of nutritional assessment tools for predicting adverse hospital outcomes. Nutr Hosp. 2009 [cited 2021 Apr 20];24(1):56-62. Available from: https://pubmed.ncbi.nlm.nih. gov/19266114/
Nishioka S, Wakabayashi H, Kayashita J, Taketani Y, Momosakiet R. Predictive validity of the Mini Nutritional Assessment Short-Form for rehabilitation patients: a retrospective analysis of the Japan Rehabilitation Nutrition Database. J Hum Nutr Diet. 2021;34(5):881-9. https://doi.org/10.1111/jhn.12887
Guigoz Y. The mini nutritional assessment (MNA®) review of the literature – What does it tell us? J Nutr Health Aging. 2006;10(6):466-87. https://pubmed.ncbi.nlm.nih.gov/17183419/
World Health Organization. Physical status: the use and interpretation of antropometry. Report of a WHO Expert Commitee. WHO Technical Report Series, 854 Geneve: Organization; 1995 [cited 2020 Dec 10]. Available from: http://whqlibdoc.who.int/trs/WHO_TRS_854.pdf?ua=1
Domingos C, Matias CN, Cyrino ES, Sardinha LB, Silva AM. The usefulness of Tanita TBF-310 for body composition assessment in Judo athletes using a four-compartment molecular model as the reference method. Rev Assoc Med Bras. 2019;65(10):1283-89. http://dx.doi.org/10.1590/1806-9282.65.10.1283
Pereira RA, Cordeiro AC, Avesani CM, Carrero JJ, Lindholm B, Amparo FC, et al. Sarcopenia in chronic kidney disease on conservative therapy: prevalence and association with mortality. Nephrol Dial Transplant. 2015;30:1718-25. https://doi.org/10.1093/ndt/gfv133
Klok FA, Boon GJAM, Barco S, Endres M, Geelhoed JJM, Knauss S, et al. The Post-COVID-19 Functional Status scale: a tool to measure functional status over time after COVID-19. Eur Respir J. 2020;56:e2001494. https://doi. org/10.1183/13993003.01494-2020
Padovani AR, Moraes DP, Mangili LD, Andrade CRF. Protocolo Fonoaudiológico de Avaliação do Risco para Disfagia (PARD). Rev Soc Bras Fonoaudiol. 2007 [cited 2020 Nov 26];12(3):199-205. Available from: https://www.scielo.br/j/ rsbf/a/sFTJfXjKkqrtYjSKzDzgyDd/?format=pdf&lang=pt
Michalakis K, Ilias I. SARS-CoV-2 infection and obesity: common inflammatory and Metabolic aspects. Diabetes Metab Syndr. 2020;14(4):469-71. https://doi.org/10.1016/j.dsx.2020.04.033
Simonnet A, Chetboun M, Poissy J, Raverdy V, Noulette J, Duhamelet A, et al. High prevalence of obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity. 2020;28(7):1195-99. https://doi.org/10.1002/oby.22831
Freuer D, Linseisen J, Meisinger C. Impact of body composition on covid-19 susceptibility and severity: a two-sample multivariable mendelian randomization study. Metab Clin Exp. 2021;118: 154732. https://doi.org/10.1016/j. metabol.2021.154732
Li T, Zhang Y, Gong C, Wang J, Liu B, Shi L, et al. Prevalence of malnutrition and analysis of related factors in elderly patients with COVID-19 in Wuhan, China. Eur J Clin Nutr.2020;74:871-75. https://doi.org/10.1038/S41430-020- 0642-3
Pasquarelli-do-Nascimento G, Braz-de-Melo HA, Faria SS, Santos IO, Kobinger GP, Magalhães KG, et al. Hypercoagulopathy and adipose tissue exacerbated inflammation may explain higher mortality In Covid-19 patients with obesity. Front Endocrinol. 2020;11:e530. https://doi.org/10.3389/fendo.2020.00530
Bedock D, Bel Lassen P, Mathian A, Moreau P, Couffignal J, Ciangura C, et al. Prevalence and severity of malnutrition in hospitalized COVID-19 patients. Clin Nutr ESPEN. 2020;40;214-19. https://doi.org/10.1016/j.clnesp.2020.09.018
Haraj NE, El Aziz S, Chadli A, Dafir A, Mjabber A, Aissaoui O, et al. Nutritional status assessment in patients with Covid-19 after discharge from the intensive care unit. Clin Nutr ESPEN. 2020;41:423-28. https://doi.org/10.1016/j. clnesp.2020.09.214
Ridley EJ, Parke RL, Davies AR, Bailey M, Hodgsonet C, Deane AM, et al. What happens to nutrition intake in the post–intensive care unit hospitalization period? an observational cohort study in critically ill adults. JPEN J Parenter Enteral Nutr. 2018;43(1):88-95. https://doi.org/10.1002/jpen.1196
Zhong X, Zimmers TA. Sex differences in cancer cachexia. Curr Osteoporos Rep. 2020;18:646-54. https://doi. org/10.1007/s11914-020-00628-w
Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. https://doi.org/10.1093/ageing/afy169
Moonen HPFX, Zanten FJLV, Driessen L, Smet VD, Slingerland-Boot AR, Mensink AM, et al. Association of bioelectric impedance analysis body composition and disease severity in covid-19 hospital ward and ICU patients: the Biac-19 study. Clin Nutr. 2021;40(4):2328-36. https://doi.org/10.1016/j.clnu.2020.10.023
Petersen A, Bressem, K, Albrecht, J, Thieb HM, Vahldiek J, Hamm B, et al. The role of visceral adiposity in the severity of COVID-19: highlights from a unicenter cross-sectional pilot study in Germany. Metabolism. 2020;110:e154317. https://doi.org/10.1016/j.metabol.2020.154317
Musheyev B, Borg L, Janowicz R, Matarlo M, Boyle H, Singh G, et al. Functional status of mechanically ventilated COVID-19 survivors at ICU and hospital discharge. J Intensive Care. 2021;9(1):e31. https://doi.org/10.1186/s40560- 021-00542-y
Hussein AARM, Saad M, Zayan HE, Abdelsayed M, Moustafa M, Ezzat AR, et al. Post covid 19 functional status: relation to age, smoking, hospitalization, and previous comorbidities. Ann Thorac Med. 2021;16(3):260 5. https:// doi.org/10.4103/atm.atm_606_20
Taboada M, Cariñena A, Moreno E, Dominguez MJ, Spainet S, Riveiro ACV, et al. Post-COVID-19 functional status six-months after hospitalization. J Infect. 2021;82(4):e31-e33. https://doi.org/10.1016/j.jinf.2020.12.022
Carod-Artal FJ. Post-COVID-19 syndrome: epidemiology, diagnostic criteria and pathogenic mechanisms involved. Rev Neurol. 2021;72(11):384-96. https://doi.org/10.33588/rn.7211.2021230
Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens JS, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27:601-15. https://doi.org/10.1038/s41591-021-01283-z
Huang C, Huang L, Wang Y, Li X, Ren L, Gu X, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021;397(10270):220-32. https://doi.org/10.1016/S0140-6736(20)32656-8
Carfi A, Bernabei R, Landi F, Gremese E, Bernabeiet R, Fantoni M, et al. Persistent symptoms in patients after acute COVID-19. Jama. 2020;324(6):603-05. https://doi.org/10.1001/jama.2020.12603
Cava E, Carbone S. Coronavirus disease 2019 pandemic and alterations of body composition. Curr Opin Clin Nutr Metab Care. 2021; 24(3):229-35. https://doi.org/10.1097/MCO.0000000000000740
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Juliana Alves SOUZA, Viviane Bohrer BERNI, Tamires Daros dos SANTOS, Thaís Dias FELTRIN, Isabella Martins de ALBUQUERQUE, Adriane Schmidt PASQUALOTO
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.