Hematologia e bioquímica plasmática em ratos alimentados com dietas enriquecidas com peixes gordurosos da bacia Amazônica
Palavras-chave:
Colesterol, Dieta, Parâmetros, TriglicerídiosResumo
Objetivo
A hematologia e bioquímica plasmática foram avaliadas em ratos submetidos a dietas enriquecidas com peixes gordurosos da região amazônica.
Métodos
Ratos machos da linhagem Wistar foram divididos em quatro grupos: grupo-controle (dieta-padrão); grupo mapará (dietas enriquecidas com Hypophthtalmus edentatus); grupo matrinxã (dietas enriquecidas com Brycon spp.); grupo tambaqui (dietas enriquecidas com Colossoma macropomum). Os parâmetros hematológicos e as variáveis bioquímicas plasmáticas foram analisadas nos animais após 30 dias de experimentação.
Resultados
Animais alimentados com dietas enriquecidas com tambaqui e matrinxã apresentaram valores de hematócrito e concentração de hemoglobina mais elevados que aqueles alimentados com dieta padrão. Não foram observadas alterações nas variáveis hematológicas em ratos alimentados com dietas enriquecidas com mapará. Porém, os ratos desse grupo apresentaram elevados teores de colesterol total plasmáticos, principalmente de colesterol da lipoproteína de baixa densidade e colesterol da lipoproteína de alta densidade. Todos os tratamentos com dietas enriquecidas reduziram os níveis de triacilgliceróis plasmáticos.
Conclusão
Dietas enriquecidas com carne de peixes amazônicos gordurosos reduzem os teores de triacilgliceróis plasmáticos e aumentam os níveis de colesterol da lipoproteína de alta densidade, especialmente nos ratos do grupo tambaqui. Com exceção do grupo mapará, ratos alimentados com dietas enriquecidas com outras dietas enriquecidas com peixes apresentaram alterações hematológicas. Porém, fazem-se necessário mais estudos para se estabelecerem os benefícios das dietas enriquecidas com peixes gordurosos da Bacia Amazônica.
Referências
Wang YJ, Miller LA, Perren M, Addis PB. Omega-3 fatty acids in Lake Superior fish. J Food Sci. 1990; 55(1):71-3. doi: 10.1111/j.1365-2621.1990.tb06018.x
Sartori AGO, Amancio RD. Pescado: importância nutricional e consumo no Brasil. Segur Aliment Nutr. 2012; 19(2):83-93.
Nair SS, Leitch JW, Falconer J, Garg ML. Prevention of cardiac arrhythmia by dietary (n-3) polyunsaturated fatty acids and their mechanism
of action. J Nutr. 1997; 127(2):383-93.
Souza SMG, Anido RJV, Tognon FC. Ácidos graxos Ômega-3 e Ômega-6 na nutrição de peixes: fontes e relações. Rev Ciênc Agroveter. 2007; 6(1):63-71.
Stone NJ. Fish consumption, fish oil, lipids, and coronary heart disease. Circulation. 1996; 94:2337-40. doi: 10.1161/01.CIR.94.9.2337
Bang HO, Dyerberg J, Sinclair HM. The composition of the Eskimo food in Northwestern Greenland. Am J Clin Nutr. 1980; 33(12):2657-61.
Wakai K, Ito Y, Kojima M, Tokudome S, Ozasa K, Inaba Y, et al. Intake frequency of fish and serum levels of long-chain n-3 fatty acids: A cross-sectional study within the Japan Collaborative Cohort Study. J Epidemiol. 2005; 15(6):211-8. doi: 10.2188/jea.15.211
Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Balança comercial do agronegócio. Brasília: Ministério da Agricultura, Pecuária e Abastecimento; 2012.
Technical Guidance. Update of the criteria used in the assessment of bacterial resistance to antibiotics of human or veterinary importance. Prepared by the panel on additives and products or substances used in animal feeds. EFSA J. 2008; 732:1-15.
Instituto Brasileiro de Geografia e Estatística. Pesquisa de orçamentos familiares 2008-2009: análise do consumo alimentar pessoal no Brasil. Rio de Janeiro: IBGE; 2011.
Isaac VJ, Almeida MC. El consumo de pescado en la Amazonía Brasileña. COPESCAALC Doc Ocacional. 2011; (13):1-43.
Gandra AL. O mercado de pescado da região metropolitana de Manaus. Montevidéu: Infopesca; 2010. O mercado de pescado nas grandes cidades latino-americanas.
Val AL, Almeida-Val VMF. Fishes of the Amazon and their environment- physiological and biochemical aspects. New York: Springer; 1995. Zoophysiology Series, v.32.
Philibert A, Fillion M, DeGuirre JR, Weiler HA, Passos CJS, Lemire M, et al. Plasma phospholipid omega3 fatty acids and freshwater fish consumption in the Brazilian Amazon. Food Nutrition Scienc. 2013; 4(9A):137-49. doi: 10.4236/fns.2013.49A1021
Inhamuns AJ, Franco MRB. EPA and DHA quantification in two species of freshwater fish from Central Amazonia. Food Chem. 2008; 107(2):587-91. doi: 10.1016/j.foodchem.2007.07.032
Sousa RV. Óleo de tambaqui (Colossomamacropomum, Cuvier): características nutricionais e ação no metabolismo de lipídios em ratos
hipercolesterolêmicos [mestrado]. Belo Horizonte: Universidade Federal de Minas Gerais; 1996.
Abdelhalim MAK, Alhadlaq H. Effects of cholesterol feeding periods on blood haematology and biochemistry of rabbits. Int J Bio Chem. 2008; 2(2):49-53. doi: 10.3923/ijbc.2008.49.53
Sloop GD, Garber DW. The effects of low-density lipoprotein and high-density lipoprotein on blood viscosity correlate with their association with risk of atherosclerosis in humans. Clin Sci. 1997; 92(5):473-9.
Souza FCA, Garcia NP, Sales RSA, Aguiar JPL, Duncan WLP, Carvalho RP. Effect of fatty Amazon fish consumption on lipid metabolism. Rev Nutr. 2014; 27(1):97-105. doi: 10.1590/1415-52732014000100009
Kampen EJ, Zijlstra WG. Erythrocytometric methods and their standardization. Clin Chimica Act. 1964; 6:538-42.
Toz H, Duman S, Altunel E, Sezis M, Ozbek S, Ozkahya M, et al. Intima media thickness as a predictor of atherosclerosis in renal transplantation. Transplant Proc. 2004; 36(1):156-8. doi: 10.1016/j.transproceed.2003.11.058
Thomas DS, Robert SR. Low high density lipoprotein levels are associated with an elevated blood viscosity. Atherosclerosis. 1999; 146(1):161-5.
Lee HB, Blaufox MD. Blood volume in the rat. J Nucl Med. 1985; 25(1):72-6.
Clark MR, Mohandas N, Shohet B, Hoesch RM, Rossi MR. Osmotic gradient ektacytometry: Comprehensive characterization of red cell volume and surface maintenance. Blood J. 1983; 61(5):899-910.
Lang F, Busch GL, Ritter M, Völkl H, Waldegger S, Gulbins E, et al. Functional significance of cell volume regulatory mechanisms. Physiol Rev. 1998; 78(1):247-306.
Bunyaratvej P, Komindr S, Wisedpanichkij R. Different reticulocyte volume in diabetes Mellitus patients with and without hypercholesterolemia and/or hypertriglyceridemia. J Med Assoc. 2000; 83(7):790-6.
Moreira AB, Visentainer JV, Souza NE, Matsushita M. Fatty acids profile and cholesterol contents of three Brazilian Brycon freshwater fishes. J Food Comp Anal. 2001; 14(6):565-74.
Suprijana O, Terpstra AHM, Van Lith HA, Van Tol A, Lemmens AG, Geelhoed-Mieras MM, et al. Plasma lipids and apolipoproteins in rats fed diets with type of fat (fish oil versus corn oil) and fiber (pectin versus cellulose) as variables. Nutr Res. 1997; 17(7):1187-97.
Kim HK, Choi S, Choi H. Suppression of hepatic fatty acid synthase by feeding a-linolenic acid rich perilla oil lowers plasma triacylglycerol level in rats. J Nutr Biochem. 2004; 15(8):485-92.
Charman A, Muriithi EW, Milne E. Wheatley DJ, Armstrong RA, Belcher PR. Fish oil before cardiac surgery: Neutrophil activation is unaffected but myocardial damage is moderated. Prostag, Leukotr Ess. 2005; 72(4):257-65.
Singer P. Fluvastantinplus fish oil are more effective on cardiovascular risk factors than fluvastatin alone. Prostag Leukotr Ess. 2005; 72(5):379-80.
Murray RK, Bender DA, Botham KM, Kennelly PJ, Rodwell VW, Well PA. Harper’s illustrated Biochemistry. 26th ed. Toronto: McGraw-Hill; 2003.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Francisca das Chagas do Amaral SOUZA, Wallice Paxiúba DUNCAN, Roasany Piccolotto CARVALHO
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.