Efeitos da ingestão de xarope de milho com alto teor de frutose na regulação da ingestão energética e na expressão gênica de leptina em ratos

Autores

  • Guadalupe LÓPEZ-RODRÍGUEZ Universidad Autónoma del Estado de Hidalgo
  • Silke Kotasek OSUNA Universidad Autónoma del Estado de Hidalgo
  • Marcos GALVÁN GARCÍA Universidad Autónoma del Estado de Hidalgo
  • Teodoro SUÁREZ DIEGUEZ Universidad Autónoma del Estado de Hidalgo

Palavras-chave:

Peso corporal, Dieta hiperlipídica, Gene de sintetase de ácidos graxos, Frutose, Leptina

Resumo

Objetivo
Avaliar em ratos Wistar o efeito do consumo crônico de xarope de milho com alta concentração de frutose sobre os lipídeos séricos, peso corporal, regulação da ingestão energética e expressão de genes associados.

Métodos
Durante 11 semanas, ratos machos foram alimentados com uma dieta padrão com água (controle) ou 15% de xarope de milho com alta concentração de frutose, ou com uma dieta hiperlipídica. A ingestão alimentar e o peso corporal dos ratos foram medidos semanalmente. Os animais foram sacrificados com 119 dias de vida, e as expressões gênicas de leptina e da sintetase de ácidos graxos foram quantificadas no cérebro e no tecido adiposo usando a reação em cadeia da polimerase em tempo real.

Resultados
O consumo de 15% de xarope de milho com alto teor de frutose não afetou o peso dos animais, somente os ratos da dieta hiperlipídica aumentaram de peso significativamente. Nas dietas hiperlipídica e com alto teor de frutose, foram evidentes expressões mais baixas de leptina e mais altas de sintetase de ácidos graxos no cérebro, assim como concentrações mais altas de triacilglicerídeos séricos.

Conclusão
Ingestão de xarope de milho com alta concentração de frutose a 15% ou de dieta hiperlipídica diminuíram a expressão gênica de leptina no cérebro de ratos Wistar, com diferentes efeitos sobre o aumento de peso. 

Referências

Corporacion Nacional de Consumidores y Usuarios. Balance nacional de endulcorantes. Toledo: Infocanã; 2014 [acceso 2014 Mar 1]. Disponible en: http://www.infocana.gob.mx /lista_balances. php?t=2

Barquera S, Campos I, Rivera JA. Mexico attempts to tackle obesity: The process, results, push backs and future challenges. Obes Rev. 2013; 14(Suppl. 2): 69-78. http://dx.doi.org/10.1111/obr.12096

Goran MI, Ulijaszek SJ, Ventura EE. High fructose corn syrup and diabetes prevalence: A global perspective. Glob Public Health. 2013; 8(1):55-64. http://dx.doi.org/10.1080/17441692.2012.73 6257

Mattes RD, Shikany JM, Kaiser KA, Allison DB. Nutritively sweetened beverage consumption and body weight: A systematic review and meta-analysis of randomized experiments. Obes Rev. 2011; 12(5):346-65. http://dx.doi.org/10.1111/j.1467-78 9X.2010.00755.x

Palmer JR, Boggs DA, Krishnan S, Hu FB, Singer M, Rosenberg L. Sugar-sweetened beverages and incidence of type 2 diabetes Mellitus in African American women. Arch Int Med. 2008; 168(14): 1487-92. http://dx.doi.org/10.1001/archinte.168. 14.1487

Romaguera D, Norat T, Wark PA, Vergnaud AC, Schulze MB, van Woudenbergh GJ, et al. Consumption of sweet beverages and type 2 diabetes incidence in European adults: Results from EPIC-InterAct. Diabetologia. 2013; 56(7):1520-30. http://dx.doi.org/10.1007/s00125-013-2899-8

Fagherazzi G, Vilier A, Saes Sartorelli D, Lajous M, Balkau B, Clavel-Chapelon F. Consumption of artificially and sugar-sweetened beverages and incident type 2 diabetes in the Etude Epidemiologique aupres des femmes de la Mutuelle Generale de l’Education Nationale-European Prospective Investigation into Cancer and Nutrition cohort. Am J Clin Nutr. 2013; 97(3):517-23. http://dx.doi.org/ 10.3945/ajcn.112.050997

Bray GA. Fructose and risk of cardiometabolic disease. Curr Atheroscler Rep. 2012; 14(6):570-8. http://dx.doi.org/10.1007/s11883-012-0276-6

de Koning L, Malik VS, Kellogg MD, Rimm EB, Willett WC, Hu FB. Sweetened beverage consumption, incident coronary heart disease, and biomarkers of risk in men. Circulation. 2012; 125(14):1735-41. http://dx.doi.org/10.1161/ CIRCULATIONAHA.111.067017

Bazzano LA, Li TY, Joshipura KJ, Hu FB. Intake of fruit, vegetables, and fruit juices and risk of diabetes in women. Diabetes Care. 2008; 31(7):1311-7. http://dx.doi.org/10.2337/dc08-0080

Dekker MJ, Su Q, Baker C, Rutledge AC, Adeli K. Fructose: A highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiol Endocrinol Metab. 2010; 299(5):E685-94. http://dx.doi.org/ 10.1152/ajpendo.00283.2010

Stanhope KL, Bremer AA, Medici V, Nakajima K, Ito Y, Nakano T, et al. Consumption of fructose and high fructose corn syrup increase postprandial triglycerides, LDL-cholesterol, and apolipoprotein B in young men and women. J Clin Endocrinol Metab. 2011; 96(10):E1596-605. http://dx.doi.org/ 10.1210/jc.2011-1251

Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, et al. Consuming fructose sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009; 119(5):1322-34. http://dx.doi. org/10.1172/JCI37385

Cha SH, Wolfgang M, Tokutake Y, Chohnan S, Lane MD. Differential effects of central fructose and glucose on hypothalamic malonyl-CoA and food intake. Proc Natl Acad Sci. 2008; 105(44):16871-5. http://dx.doi.org/10.1073/pnas.0809255105

Page KA, Chan O, Arora J, Belfort-Deaguiar R, Dzuira J, Roehmholdt B, et al. Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways. JAMA. 2013; 309(1):63-70. http://dx. doi.org/10.1001/jama.2012.116975

Barquera S, Campirano F, Bonvecchio A, Hernandez-Barrera L, Rivera JA, Popkin BM. Caloric beverage consumption patterns in Mexican children. Nutr J. 2010; 9:47. http://dx.doi.org/10.11 86/1475-2891-9-47

Vos MB, Kimmons JE, Gillespie C, Welsh J, Blanck HM. Dietary fructose consumption among US children and adults: The Third National Health and Nutrition Examination Survey. Medscape J Med. 2008; 10(7):160.

Forshee RA, Storey ML, Allison DB, Glinsmann WH, Hein GL, Lineback DR, et al. A critical examination of the evidence relating high fructose corn syrup and weight gain. Crit Rev Food Sci Nutr. 2007; 47(6):561-82. http://dx.doi.org/10.1080/104083 90600846457

Bocarsly ME, Powell ES, Avena NM, Hoebel BG. High-fructose corn syrup causes characteristics of obesity in rats: Increased body weight, body fat and triglyceride levels. Pharmacol Biochem Behav. 2010; 97(1):101-6. http://dx.doi.org/10.1016/j. pbb.2010.02.012

Light HR, Tsanzi E, Gigliotti J, Morgan K, Tou JC. The type of caloric sweetener added to water influences weight gain, fat mass, and reproduction in growing Sprague-Dawley female rats. Exp BiolMed. 2009; 234(6):651-61. http://dx.doi.org/10.3 181/0812-RM-368

Stanhope KL, Havel PJ. Fructose consumption: Potential mechanisms for its effects to increase visceral adiposity and induce dyslipidemia and insulin resistance. Curr Opin Lipidol. 2008; 19(1):16-24. http://dx.doi.org/10.1097/MOL.0b0 13e3282f2b24a

Shibata K, Fukuwatari T. High d(+)-fructose diet adversely affects testicular weight gain in weaning rats horizontal line protection by moderate d(+)- glucose diet. Nutr Metab Insights. 2013; 6:29-34. http://dx.doi.org/10.4137/NMI.S12584

Maersk M, Belza A, Stodkilde-Jorgensen H, Ringgaard S, Chabanova E, Thomsen H, et al. Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: A 6-mo randomized intervention study. Am J Clin Nutr. 2012; 95(2):283-9. http://dx.doi.org/10.3945/ajcn. 111.022533

Shimano H, Horton JD, Shimomura I, Hammer RE, Brown MS, Goldstein JL. Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J Clin Invest. 1997; 99(5):846-54. http://dx.doi.org/10.1172/JCI119248

Li X, Xu Z, Wang S, Guo H, Dong S, Wang T, et al. Emodin ameliorates hepatic steatosis through endoplasmic reticulum stress-sterol regulatory element binding protein 1c pathway in liquid fructose feeding rats. Hepatol Res. 2015. http://dx. doi.org/10.1111/hepr.12538. [Epub ahead of print].

Aragno M, Tomasinelli CE, Vercellinatto I, Catalano MG, Collino M, Fantozzi R, et al. SREBP-1c in nonalcoholic fatty liver disease induced by Western type high-fat diet plus fructose in rats. Free Radical Biol Med. 2009; 47(7):1067-74. http://dx.doi.org/ 10.1016/j.freeradbiomed.2009.07.016

LaBarge S, Migdal C, Schenk S. Is acetylation a metabolic rheostat that regulates skeletal muscle insulin action? Mol Cells. 2015; 38(4):297-303. http://dx.doi.org/10.14348/molcells.2015.0020

Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado de Oliveira R, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. 2004; 429(6993): 771-6. http://dx.doi.org/10.1038/nature02583

Rebollo A, Roglans N, Baena M, Sanchez RM, Merlos M, Alegret M, et al. Liquid fructose downregulates Sirt1 expression and activity and impairs the oxidation of fatty acids in rat and human liver cells. Biochim Biophys Acta. 2014; 1841(4): 514-24. http://dx.doi.org/10.1016/j.bbalip.2014.0 1.002

Banks WA, Coon AB, Robinson SM, Moinuddin A, Shultz JM, Nakaoke R, et al. Triglycerides induce leptin resistance at the blood-brain barrier. Diabetes. 2004; 53(5):1253-60.

Huang D, Dhawan T, Young S, Yong WH, Boros LG, Heaney AP. Fructose impairs glucose-induced hepatic triglyceride synthesis. Lipids Health Dis. 2011; 10:20. http://dx.doi.org/10.1186/1476-511 X-10-20

Bursac BN, Vasiljevic AD, Nestorovic NM, Velickovic NA, Vojnovic Milutinovic DD, Matic GM, et al. High fructose diet leads to visceral adiposity and hypothalamic leptin resistance in male rats--do glucocorticoids play a role? J Nutr Biochem. 2014; 25(4):446-55. http://dx.doi.org/10.1016/j.jnutbio. 2013.12.005

Liu ZJ, Bian J, Liu J, Endoh A. Obesity reduced the gene expressions of leptin receptors in hypothalamus and liver. Horm Metab Res. 2007; 39(7):489-94. http://dx.doi.org/10.1055/s-2007-9 81680

Morash B, Li A, Murphy PR, Wilkinson M, Ur E. Leptin gene expression in the brain and pituitary gland. Endocrinology. 1999; 140(12):5995-8. http:// dx.doi.org/10.1210/endo.140.12.7288

Haring SJ, Harris RB. The relation between dietary fructose, dietary fat and leptin responsiveness in rats. Physiol Behav. 2011; 104(5):914-22. http:// dx.doi.org/10.1016/j.physbeh.2011.05.032

Zhang Y, Scarpace PJ. The role of leptin in leptin resistance and obesity. Physiol Behav. 2006; 88(3):249-56. http://dx.doi.org/10.1016/j.physbeh. 2006.05.038

Prager GN, Ontko JA. Direct effects of fructose metabolism on fatty acid oxidation in a recombined rat liver mitochondria-hish speed supernatant system. Biochim Biophys Acta. 1976; 424(3):386-95.

Vila L, Roglans N, Alegret M, Sanchez RM, Vazquez Carrera M, Laguna JC. Suppressor of cytokine signaling-3 (SOCS-3) and a deficit of serine/ threonine (Ser/Thr) phosphoproteins involved in leptin transduction mediate the effect of fructose on rat liver lipid metabolism. Hepatology. 2008; 48(5):1506-16. http://dx.doi.org/10.1002/hep. 22523

Downloads

Publicado

05-04-2023

Como Citar

LÓPEZ-RODRÍGUEZ, G., Kotasek OSUNA, S. ., GALVÁN GARCÍA, M. ., & SUÁREZ DIEGUEZ, T. . (2023). Efeitos da ingestão de xarope de milho com alto teor de frutose na regulação da ingestão energética e na expressão gênica de leptina em ratos. Revista De Nutrição, 28(6). Recuperado de https://periodicos.puc-campinas.edu.br/nutricao/article/view/8256

Edição

Seção

ARTIGOS ORIGINAIS