Nutritional potential of leaves and tubers of crem (Tropaeolum pentaphyllum Lam.)
Palavras-chave:
Chemical analysis, Food analysis, Nutrients, Nutritive value, TropaeolaceaeResumo
Objective
To determine the centesimal composition of minerals, fatty acids and vitamin C of leaves and tubers of crem, and to discuss the nutritional potential of the T. pentaphyllum species.
Methods
The centesimal composition of protein, lipid, fi ber, ash and carbohydrate was determined by gravimetric analysis. Mineral composition was determined by optical emission spectrometry. Vitamin C was determined by dinitrophenylhydrazine method. Fatty acids were determined by gas chromatography. The percentage of recommended dietary intake of leaves and tubers of crem was calculated for each nutrient.
Results
A high content of fi brous fraction (63.07g/100g), potassium (4.55g/100g), magnesium (553.64mg/100g) and sulfur (480.79mg/100g) was observed in the chemical composition of leaves. In tubers, a high carbohydrate content was observed, with 62.60g/100g of starch and 3.43g/100g of fiber, as well as high potassium (0.58g/100g), sulfur (447.14g/100), calcium (205.54g/100g) and phosphorus (530.07g/100g) levels. The vitamin C content of tubers was 78.43mg/100g and the linoleic acid content was 0.455g/100g. The intake of 100g of crem leaves may contribute with 65% of the recommended dietary intake of sulfur. The intake of 100g of crem tuber may contribute with 106% of the recommended dietary intake of sulfur and 21% of the recommended dietary intake of Vitamin C.
Conclusion
The chemical composition of crem (Tropaeolum pentaphyllum Lam.) tubers and leaves demonstrated an important contribution of nutrients, mainly sulfur, vitamin C and linoleic acid in its tubers, indicating a high nutritional potential of this species.
Referências
Chaves A, Zanin EM. Etnobotânica em comunidades rurais de origem italiana e polonesa do município de Erechim, RS. Perspectivas. 2012;36(133):95-113.
Rix M. Tropaeolum Pentaphyllum Tropaeolaceae. Curtis’s Bot Mag. 2010;27(3):296-300. http://dx.doi.org/10.1111/j.1467-8748.2010.01706.x
Guerra E, Streher NS, Lüdtke R. Plantas trepadeiras do Horto Botânico Irmão Teodoro Luis, sul do Rio Grande do Sul, Brasil. Rev Bras Biociênc. 2015;13(4):201-9.
Kinupp VF, Lorenzi H. Plantas Alimentícias Não-Convencionais (PANC) no Brasil: guia de identificação, aspectos nutricionais e receitas ilustradas. Nova Odessa: Plantarum; 2014.
Simões GD. Crem (Tropaeolum pentaphyllum Lam.): caracterização química, antioxidante e sua aplicação como condimento em uma pasta vegetal [dissertação]. Santa Maria: Universidade Federal de Santa Maria; 2015.
Young JI, Züchner S, Wang G. Regulation of the epigenome by vitamin C. Annu Rev Nutr. 2015;35:545-64. http://dx.doi.org/10.1146/annurevnutr-071714-034228
Michels AJ, Hagen TM, Frei B. Human genetic variation influences vitamin C homeostasis by altering vitamin C transport and antioxidant enzyme function. Annu Rev Nutr. 2013;33:45-70. http://dx.doi.org/10.1146/annurev-nutr-071812-161246
King S, Gershoff SN. Nutritional evaluation of three underexploited Andean tubers: Oxalis tuberosa (Oxalidaceae), Ullucus tuberosus (Basellaceae), and Tropaeolum tuberosum (Tropaeolaceae). Econ Bot. 1987;41(4):503-11. http://dx.doi.org/10.1007/BF02908144
Martin C, Zhang Y, Tonelli C, Petroni K. Plants, diet, and health. Annu Rev Plant Biol. 2013;64:19-46. http://dx.doi.org/10.1146/annurev-arplant-050312-120142
Otten JJ, Hellwig JP, Meyers LD. Dietary reference intake: The essential guide to nutrient requirements. Washington (DC): The National Academies Press; 2006.
Cruz MCS, Denardi LB, Mossmann NJ, Piana M, Alves SH, Campos MMA. Antimicrobial activity and chromatographic analysis of extracts from Tropaeolum pentaphyllum Lam. tubers. Molecules. 2016;21(566):1-11. http://dx.doi.org/10.3390/molecules21050566
Siri-Tarino PW, Chiu S, Bergeron N, Krauss RM. Saturated fats versus polyunsaturated fats versus carbohydrates for cardiovascular disease prevention and treatment. Annu Rev Nutr. 2015;35:517-43. http://dx.doi.org/10.1146/annurev-nutr-071714-034449
Miller JC, Smith C, Willians SM, Mann JI, Brown RC, Parnell WR, et al. Trends in serum total cholesterol and dietary fat intakes in New Zealand between 1989 and 2009. Aust N Z J Public Health. 2016;40(3):263-9. http://dx.doi.org/10.1111/1753-6405.12504
Zock PL, Blom WAM, Nettleton JA, Hornstra G. Progressing insights into the role of dietary fats in the prevention of cardiovascular disease. Curr Cardiol Rep. 2016;18(111):1-13. http://dx.doi.org/10.1007/s11886-016-0793-y
Fengqiong L, Zhongxia L, Xiaofei L, Jing M. Dietary n-3 polyunsaturated fatty acid intakes modify the effect of genetic variation in fatty acid desaturase 1 on coronary artery disease. Plos One. 2015;10(4):1-10. http://dx.doi.org/10.1371/journal.pone.0121255
Lopes LL, Peluzio MCG, Hermsdorff HHM. Ingestão de ácidos graxos monoinsaturados e metabolismo lipídico. J Vasc Bras. 2016;15(1):52-60. http://dx.doi.org/10.1590/1677-5449.008515
Trojan-Rodrigues M, Alves TLS, Soares GLC, Ritter MR. Plants used as antidiabetics in popular medicine in Rio Grande do Sul, southern Brazil. J Ethnopharmacol. 2012;139(1):155-63. http://dx.doi.org/10.1016/j.jep.2011.10.034
Brondani JC, Cuelho CHF, Morangoni LD, Lima R, Guex CG, Bonilha IF, et al. Traditional usages, botany, phytochemistry, biological activity and toxicology of Tropaeolum majus L.: A review. Bol Latinoam Caribe Plant Med Aromaticas. 2016;15(4):264-73.
Farvid MS, Ding M, Pan A, Sun Q, Chiuve SE, Steffen LM, et al. Dietary linoleic acid and risk of coronary heart disease: A systematic review and metaanalysis of prospective cohort studies. Epidemiol Prev Circ. 2014;130(18):1568-78. http://dx.doi.org/10.1161/circulationaha.114.010236
Association of Official Agricultural Chemistry. Official methods of analysis. 16th ed. Arlington: AOAC International; 1995.
Tedesco MJ, Gianello C. Metodologia de análises de solo, plantas, adubos orgânicos e resíduos. In: Bissani CA, Gianello C, Camargo FAO, Tedesco MJ. Fertilidade dos solos e manejo da adubação de culturas. Porto Alegre: Genesis; 2004. p.61-6.
Terada M, Watanabe Y, Kunitomo M, Hayashi E. Differential rapid analysis of ascorbic acid and ascorbic acid 2-sulfate by dinitrophenylhydrazine method. Anal Biochem. 1978;84(2):604-8. http://dx.doi.org/10.1016/0003-2697(78)90083-0
Andrade JM, Marin R, Apel MA, Raseira MCB, Henriques AT. Comparison of the fatty acid profiles of edible native fruit seeds from southern Brazil. Inter J Food Prop. 2012;15(4):815-22. http://dx.doi.org/10.1080/10942912.2010.503355
Valcárcel-Yamani B, Rondán-Sanabria G, Finardi--Filho F. The physical, chemical and functional characterization of starches from Andean tubers: Oca (Oxalis tuberosa Molina), olluco (Ullucus tuberosus Caldas) and mashua (Tropaeolum tuberosum Ruiz & Pavón). Braz J Pharm Sci.2013;49(3):453-64. http://dx.doi.org/10.1590/S1984-82502013000300007
Quispe C, Mansilla R, Chacón A, Blas R. Análisis de la variabilidad morfológica del “añu” Tropaeolum Tuberosum Ruiz & Pavón procedente de nueve distritos de la región Cusco. Ecol Apl. 2015;14(2):211-22.
Castro DS, Oliveira TKB, Lemos DM, Rocha APT, Almeida RD. Efeito da temperatura sobre a composição físico-química e compostos biativos de farinha de taro obtida em leite de jorro. Braz J Food Technol. 2017;20:1-5. http://dx.doi.org/10.1590/1981-6723.6016
Fernandes L, Casal S, Pereira JA, Saraiva JA, Ramalhosa E. Uma perspectiva nutricional sobre flores comestíveis. Acta Port Nutr. 2016;6:32-7. http://dx.doi.org/10.21011/apn.2016.0606
Bazylko A, Parzonko A, Jez W, Osinska E, Kiss AK. Inhibition of ROS production, photoprotection, and total phenolic, flavonoids and ascorbic acid content of fresh herb juice and extracts from the leaves and flowers of Tropaeolum majus. Ind Crops Prod. 2014;55:19-24. http://dx.doi.org/10.1016/j.indcrop.2014.01.056
Amalraj A, Pius A. Bioavailability of calcium and its absorption inhibitors in raw and cooked green leafy vegetables commonly consumed in India: Anin vitro study. Food Chem. 2015;170:430-6. http://dx.doi.org/10.1016/j.foodchem.2014.08.031
Wieczorek MN, Walczak M, Skrzypczak-Zielinska M, Jelén HH. Bitter taste of Brassica vegetables: The role of genetic factors, receptors, isothiocyanates, glucosinolates and flavor context. J Crit Rev Food Sci Nutr. 2017;(in press). http://dx.doi.org/10.1080/10408398.2017.1353478
Guzman-Perez V, Bumke-Vogt C, Schreiner M, Mewis I, Borchet A, Pfeiffer AFH. Benzylglucosinolate derived isothiocyanate from Tropaeolum majus reduces gluconeogenic gene and protein expression in human cells. Plos One. 2016;13:1-27. http://dx.doi.org/10.1371/journal.pone.0162397
Platz S, Kühn C, Schiess S, Schreiner M, Kemper M, Pivovarova O, et al. Bioavailability and metabolism of benzyl glucosinolate in humans consuming Indian cress (Tropaeolum majus L.). Mol Nutr Food Res. 2016;60(3):652-60. http://dx.doi.org/10.1002/mnfr.201500633
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Vanessa Bernardi BRAGA, Maitê de Moraes VIEIRA, Ingrid Bergman Inchausti de BARROS
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.