Adipocitocinas: uma nova visão do tecido adiposo
Palavras-chave:
adipocitocinas, aterosclerose, obesidade, resistência à insulina, tecido adiposoResumo
A identificação da leptina, hormônio secretado pelos adipócitos, cujo efeito sobre o sistema nervoso simpático e a função endócrina confere participação ativa no controle do dispêndio energético, bem como do apetite, acrescentou às funções do tecido adiposo no organismo humano o papel de órgão multifuncional, produtor e secretor de inúmeros peptídeos e proteínas bioativas, denominadas adipocitocinas. Alterações na quantidade de tecido adiposo, como ocorrem na obesidade, afetam a produção da maioria desses fatores secretados pelos adipócitos. Ainda que essas alterações estejam freqüentemente associadas às inúmeras disfunções metabólicas e ao aumento do risco de doenças cardiovasculares, permanece sob investigação o envolvimento do tecido adiposo no desenvolvimento dessas complicações, considerada a sua função endócrina. As concentrações de várias adipocitocinas elevam-se na obesidade e têm sido relacionadas à hipertensão (angiotensinogênio), ao prejuízo da fibrinólise (inibidor do ativador de plasminogênio-1) e à resistência à insulina (proteína estimuladora de acilação, fator de necrose tumoral-α, interleucina-6 e resistina). De outro modo, leptina e adiponectina têm efeitos sobre a sensibilidade à insulina. Na obesidade, a resistência insulínica também está relacionada à resistência à leptina e aos teores plasmáticos reduzidos de adiponectina. Leptina e adiponectina ainda exercem efeitos orgânicos adicionais distintos: frente à participação da leptina no controle da ingestão alimentar, a adiponectina apresenta potente ação anti-aterogênica. Algumas drogas utilizadas no controle do diabetes elevam a produção endógena de adiponectina, em roedores e humanos, indicando que o desenvolvimento de novos medicamentos com alvo nas adipocitocinas pode representar uma alternativa terapêutica de prevenção da resistência insulínica e da aterosclerose em indivíduos obesos.
Referências
Havel PJ. Update on adipocyte hormones: regulation of energy balance and carbohydrate/lipid metabolism. Diabetes. 2004; 53(Suppl 1): S143-51.
Hauner H. The new concept of adipose tissue function. Physiol Behav. 2004; 83(4):653-8.
Dusserre E, Moulin P, Vidal H. Differences in mRNA expression of the proteins secreted by the adipocytes in human subcutaneous and visceral adipose tissues. Biochim Biophys Acta. 2000; 1500(1):88-96.
Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science. 1995; 269(5223):543-6.
Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature. 1997; 387(6636): 903-8.
Maffei M, Stoffel M, Barone M, Moon B, Dammerman M, Ravussin E, et al. Absence of mutations in the human OB gene in obese/diabetic subjects. Diabetes. 1996; 45(5):679-82.
Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest. 2002; 110(8):1093-103.
Kalra SP. Circumventing leptin resistance for weight control. Proc Natl Acad Sci USA. 2001; 98(8): 4279-81.
Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med. 1995; 1(11):1155-61.
Caro JF, Kolaczynski JW, Nyce MR, Ohannesian JP, Opentanova I, Goldman WH, et al. Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance. Lancet. 1996; 348(9021):159-61.
Ahima RS, Flier JS. Leptin. Ann Rev Physiol. 2000; 62:413-37.
Cioffi JA, Shafer AW, Zupancic TJ, Smith-Gbur J, Mikhail A, Platika D, et al. Novel B219/OB receptor isoforms: possible role of leptin in hematopoiesis and reproduction. Nat Med. 1996; 2(5):585-9.
Sierra-Honigmann MR, Nath AK, Murakami C, Garcia-Cardena G, Papapetropoulos A, Sessa WC, et al. Biological action of leptin as an angiogenic factor. Science. 1998; 281(5383):1683-6.
Lord GM, Matarese G, Howard JK, Baker RJ, Bloom SR, Lechler RI. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature. 1998; 394(6696): 897-901.
Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000; 100(2):197-207.
Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science. 1995; 269(5223): 546-9.
Schwartz MW, Baskin DG, Bukowski TR, Kuijper JL, Foster D, Lasser G, et al. Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide Y gene expression in ob/ob mice. Diabetes. 1996; 45(4):531-5.
Muzumdar R, Ma X, Yang X, Atzmon G, Bernstein J, Karkanias G, et al. Physiologic effect of leptin on insulin secretion is mediated mainly through central mechanisms FASEB J. 2003; 17(9):1130-2.
Seufert J, Kieffer TJ, Leech CA, Holz GG, Moritz W, Ricordi C, et al. Leptin suppression of insulin secretion and gene expression in human pancreatic islets: implications for the development of adipogenic diabetes mellitus. J Clin Endocrinol Metab. 1999; 84(2):670-6.
Ahren B, Havel PJ. Leptin inhibits insulin secretion induced by cellular cAMP in a pancreatic B cell line (INS-1 cells). Am J Physiol. 1999; 277(4 Pt 2): R959-66.
Greco AV, Mingrone G, Giancaterini A, Manco M, Morroni M, Cinti S, et al. Insulin resistance in morbid obesity: reversal with intramyocellular fat depletion. Diabetes. 2002; 51(1):144-51.
Shimomura I, Hammer RE, Ikemoto S, Brown MS, Goldstein JL. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature. 1999; 401(6748):73-6.
Ueno N, Inui A, Kalra PS, Kalra SP. Leptin transgene expression in the hypothalamus enforces euglycemia in diabetic, insulin-deficient nonobese Akita mice and leptin-deficient obese ob/ob mice. Peptides. 2006; 27(9):2332-42.
Ogawa Y, Masuzaki H, Hosoda K, Aizawa-Abe M, Suga J, Suda M, et al. Increased glucose metabolism and insulin sensitivity in transgenic skinny mice overexpressing leptin. Diabetes. 1999; 48(9):1822-9.
Clement K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D, et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature. 1998; 392(6674):398-401.
Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation. 1999; 100(25): 2473-6.
Spranger J, Kroke A, Mohlig M, Bergmann MM, Ristow M, Boeing H, et al. Adiponectin and protection against type 2 diabetes mellitus. Lancet. 2003; 361(9353):226-8.
Goldstein BJ, Scalia R. Adiponectin: a novel adipokine linking adipocytes and vascular function. J Clin Endocrinol Metab. 2004; 89(6):2563-8.
Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol. 2005; 115(5):911-9.
Funahashi T, Matsuzawa Y, Kihara S. Adiponectin as a potential key player in metabolic syndrome Insights into atherosclerosis, diabetes and cancer. Int Congress Series. 2004; 1262:368-71.
Miyoshi Y, Funahashi T, Kihara S, Taguchi T, Tamaki Y, Matsuzawa Y, et al. Association of serum adiponectin levels with breast cancer risk. Clin Cancer Res. 2003; 9(15):5699-704.
Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002; 8(11):1288-95.
Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, et al. The hormone resistin links obesity to diabetes. Nature. 2001; 409(6818): 307-12.
Savage DB, Sewter CP, Klenk ES, Segal DG, Vidal-Puig A, Considine RV, et al. Resistin/Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-gamma action in humans. Diabetes. 2001; 50(10):2199-202.
Janke J, Engeli S, Gorzelniak K, Luft FC, Sharma AM. Resistin gene expression in human adipocytes is not related to insulin resistance. Obes Res. 2002; 10(1):1-5.
Gomez-Ambrosi J, Fruhbeck G. Do resistin and resistin-like molecules also link obesity to inflammatory diseases? Ann Intern Med. 2001; 135(4):306-7.
Cianflone K, Xia Z, Chen LY. Critical review of acylation-stimulating protein physiology in humans and rodents. Biochim Biophys Acta. 2003; 1609(2):127-43.
Maslowska M, Scantlebury T, Germinario R, Cianflone K. Acute in vitro production of acylation stimulating protein in differentiated human adipocytes. J Lipid Res. 1997; 38(1):1-11.
Scantlebury T, Maslowska M, Cianflone K. Chylomicron-specific enhancement of acylation stimulating protein and precursor protein C3 production in differentiated human adipocytes. J Biol Chem. 1998; 273(33):20903-9.
Comuzzie AG, Cianflone K, Martin LJ, Zakarian R, Nagrani G, Almasy L, et al. Serum levels of acylation stimulating protein (ASP) show evidence of a pleiotropic relationship with total cholesterol, LDL, and triglycerides and preliminary evidence of
linkage on chromosomes 5 and 17 in Mexican Americans. Obes Res. 2001; 9:103S.
Murray I, Havel PJ, Sniderman AD, Cianflone K. Reduced body weight, adipose tissue, and leptin levels despite increased energy intake in female mice lacking acylation-stimulating protein. Endocrinology. 2000; 141(3):1041-9.
Coppack SW. Pro-inflammatory cytokines and adipose tissue. Proc Nutr Soc. 2001; 60(3):349-56.
Fruhbeck G, Gomez-Ambrosi J, Muruzabal FJ, Burrell MA. The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation. Am J Physiol Endocrinol Metab. 2001; 280(6):E827-47.
Morin CL, Eckel RH, Marcel T, Pagliassotti MJ. High fat diets elevate adipose tissue-derived tumor necrosis factor-alpha activity. Endocrinology. 1997; 138(11):4665-71.
Ruan H, Miles PD, Ladd CM, Ross K, Golub TR, Olefsky JM, et al. Profiling gene transcription in vivo reveals adipose tissue as an immediate target of tumor necrosis factor-alpha: implications for insulin resistance. Diabetes. 2002; 51(11): 3176-88.
Van Snick J. Interleukin-6: an overview. Ann Rev Immunol. 1996; 8:253-78.
Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab. 1998; 83(3):847-50.
Nonogaki K, Fuller GM, Fuentes NL, Moser AH, Staprans I, Grunfeld C, et al. Interleukin-6 stimulates hepatic triglyceride secretion in rats. Endocrinology. 1995; 136(5):2143-9.
Haddy N, Sass C, Droesch S, Zaiou M, Siest G, Ponthieux A, et al. IL-6, TNF-alpha and atherosclerosis risk indicators in a healthy family population: the STANISLAS cohort. Atherosclerosis. 2003; 170(2):277-83.
Wallenius K, Wallenius V, Sunter D, Dickson SL, Jansson JO. Intracerebroventricular interleukin-6 treatment decreases body fat in rats. Biochem Biophys Res Commun. 2002; 293(1):560-5.
Juhan-Vague I, Alessi MC. PAI-1, obesity, insulin resistance and risk of cardiovascular events. Thromb Haemost. 1997; 78(1):656-60.
Bastelica D, Morange P, Berthet B, Borghi H, Lacroix O, Grino M, et al. Stromal cells are the main plasminogen activator inhibitor-1-producing cells in human fat: evidence of differences between visceral and subcutaneous deposits. Arterioscler Thromb Vasc Biol. 2002; 22(1):173-8.
Samad F, Loskutoff DJ. Tissue distribution and regulation of plasminogen activator inhibitor-1 in obese mice. Mol Med. 1996; 2(5):568-82.
Birgel M, Gottschling-Zeller H, Rohrig K, Hauner H. Role of cytokines in the regulation of plasminogen activator inhibitor-1 expression and secretion in newly differentiated subcutaneous human adipocytes. Arterioscler Thromb Vasc Biol. 2000; 20(6):1682-7.
Crandall DL, Busler DE, McHendry-Rinde B, Groeling TM, Kral JG. Autocrine regulation of human preadipocyte migration by plasminogen activator inhibitor-1. J Clin Endocrinol Metab. 2000; 85(7):2609-14.
Schafer K, Fujisawa K, Konstantinides S, Loskutoff DJ. Disruption of the plasminogen activator inhibitor 1 gene reduces the adiposity and improves the metabolic profile of genetically obese and diabetic ob/ob mice. FASEB J. 2001; 15(10):1840-2.
Massiera F, Bloch-Faure M, Ceiler D, Murakami K, Fukamizu A, Gasc JM, et al. Adipose angiotensinogen is involved in adipose tissue growth and blood pressure regulation. FASEB J. 2001; 15(14):2727-9.
Einstein FH, Atzmon G, Yang XM, Ma XH, Rincon M, Rudin E, et al. Differential responses of visceral and subcutaneous fat depots to nutrients. Diabetes. 2005; 54(3):672-8.
Ailhaud G, Fukamizu A, Massiera F, Negrel R, SaintMarc P, Teboul M. Angiotensinogen, angiotensin II and adipose tissue development. Int J Obes Relat Metab Disord. 2000; 24(Suppl 4):S33-5.
Darimont C, Vassaux G, Ailhaud G, Negrel R. Differentiation of preadipose cells: paracrine role of prostacyclin upon stimulation of adipose cells by angiotensin-II. Endocrinology. 1994; 135(5): 2030-6.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Daniella Esteves Duque GUIMARÃES, Fátima Lúcia de Carvalho SARDINHA, Daniella de Moraes MIZURINI, Maria das Graças TAVARES DO CARMO
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.