Modulação e composição de ácidos graxos do leite humano

Autores

  • André Gustavo Vasconcelos COSTA Universidade Federal de Juiz de Fora
  • Céphora Maria SABARENSE Universidade Federal de Juiz de Fora

Palavras-chave:

Ácidos graxos, Composição de alimentos, Leite humano, Lipídeos, Recém-nascido

Resumo

O leite humano é um fluido complexo, considerado um alimento completo e suficiente para suprir as necessidades nutricionais de recém-nascidos durante os seis primeiros meses de vida. A fração lipídica do leite materno é a principal fonte de energia para o neonato e possui ácidos graxos essenciais; seus produtos poli-insaturados, como o ácido araquidônico e o ácido docosa-hexaenoico, são indispensáveis ao crescimento. Tanto o conteúdo lipídico quanto o tipo de ácido graxo do leite humano podem ser modulados por fatores inerentes ou não à mãe. Dentre esses fatores, destacam-se a adiposidade, o estilo de vida, o estado nutricional e a ingestão alimentar materna, que agem de forma concomitante e interdependente, dificultando as análises dos estudos que se propõem investigar tal modulação. Não se observam grandes diferenças entre as composições de ácidos graxos do leite materno de estudos realizados na América Latina e em países desenvolvidos. O leite das nutrizes de algumas regiões brasileiras apresenta os ácidos graxos essenciais, o ácido araquidônico, o ácido docosa-hexaenoico e um baixo percentual de ácidos graxos saturados e ácidos graxos trans. O presente trabalho avaliou, portanto, os principais fatores que modulam a composição do leite humano, em particular as diferenças na composição de ácidos graxos do leite de mulheres de diferentes nacionalidades e os efeitos desses componentes sobre a saúde do recém-nascido.

Referências

Buts JP. Les facteurs trophiques du lait. Arch Pediatr. 1998; 5(3):298-306. doi:10.1016/S0929-693X(97)89374-8.

Jensen RG. Lipids in human milk. Lipids. 1999; 34(12): 1243-71. doi: 10.1007/s11745-999-0477-2.

Euclydes MP. Nutrição do lactente: base científica para uma alimentação adequada. Viçosa: UFV; 2000.

ESPGAN Committee on Nutrition. Guidelines on infant nutrition. III Recommendations for infant feeding. Acta Paediatr Scand. 1982; 302(Suppl.): 1-27.

Uauy R, Hoffman DR, Peirano P, Birch DG, Birch EE. Essential fatty acids in visual and brain development. Lipids. 2001; 36(9):885-95. doi: 10.1007/s11745-001-0798-1.

Koletzko B, Rodriguez-Palmero M, Demmelmair H, Fidler N, Jensen R, Sauerwald T. Physiological aspects of human milk lipids. Early Hum Dev. 2001; 65(Supl):3S-18S. doi:10.1016/S0378-3782(01)00204-3.

Rodriguez M, Koletzko B, Kunz C, Jensen R. Nutritional and biochemical properties of human milk, part II. Lipids, micronutrients and bioactive factors. Clin Perinatol. 1999; 26(2):335-59.

Innis SM, King DJ. Trans fatty acids in human milk are inversely associated with concentrations of essential all-cis and n-3 fatty acids and determine trans, but not n-6 and n-3, fatty acids in plasma lipids of breast-fed infants. Am J Clin Nutr. 1999; 70(3):383-90.

Fidler N, Koletzko B. The fatty acid composition of human colostrum. Eur J Nutr [Internet]. (2000, Feb) [cited June 8, 2010]; 39(1):31. Available from: Academic Search Premier.

Anderson NK, Beerman KA, McGuire MA, Dasgupta N, Griinari JM, Williams J, et al. Dietary fat type influences total milk fat content in lean women. J Nutr. 2005; 135(3):416-21.

Bitman J, Wood L, Hamosh M, Hamosh P, Mehta NR. Comparison of the lipid composition of breast milk from mothers of term and preterm infants. Am J Clin Nutr. 1983; 156(2):300-12.

Rueda R, Ramirez M, Garcia-Salmeron JL, Maldonado J, Gil A. Gestational age and origin of human milk influence total lipid and fatty acid contents. Ann Nutr Metab. 1998; 42(1):12-22. doi: 10.1159/000012713.

Hayat L, Al-Sughayer MA, Afzal M. Fatty acid composition of human milk in Kuwaiti mothers. Comp Biochem Physiol. 1999; 124(3):261-7. doi: 10.1016/j.foodchem.2004.09.026.

Prado MD, Villalpando S, Elizondo A, Rodríguez M, Demmelmair H, Koletzko B. Contribution of dietary and newly formed arachidonic acid to human milk lipids in women eating a low-fat diet. Am J Clin Nutr. 2001; 74(2):242-7.

McManaman JL, Neville MC. Mammary physiology and milk secretion. Adv Drug Deliv Rev. 2003; 55(5):629-41. doi:10.1016/S0169409X(03)00033-4.

Mandel D, Lubetzky R, Dollberg S, Barak S, Mimouni FB. Fat and energy contents of expressed human breast milk in prolonged lactation. Pediatrics. 2005; 116(3):432-5. doi:10.1542/peds. 2005-0313.

Yamawaki N, Yamada M, Kan-no T, Kojima T, Kaneko T, Yonekubo A. Macronutrient, mineral and trace element composition of breast milk from Japanese women. J Trace Elem Med Biol. 2005; 19 (2-3):171-81..doi:10.1016/j.jtemb.2005.05.001.

Cunha J, Costa THM, Ito MK. Influences of maternal dietary intake and suckling on breast milk lipid and fatty acid composition in low-income women from Brasília, Brazil. Early Hum Dev. 2005; 81(3):303-11. doi:10.1016/j.earlhumdev.2004.08.004.

Kent JC, Mitoulas LR, Cregan M, Ramsay DT, Doherty D. Volume and frequency of breastfeedings and fat content of breast milk throughout the day. Pediatrics. 2006; 117(3):387-95. doi:10.1542/peds.2005-1417.

Costa AGV, Priore SE, Sabarense CM, Franceschini SCC. Questionário de frequência de consumo alimentar e recordatório de 24 horas: aspectos metodológicos para avaliação da ingestão de lipídeos. Rev Nutr. 2006; 19(5):631-41. doi:10.1590/S1415-52732006000500011.

Serra G, Marletta A, Bonacci W, Campone F, Bertini I, Lantieri P, et al. Fatty acids composition of human milk in Italy. Biol Neonate. 1997; 72(1):1-8. doi: 10.1159/000244459.

Silva MHL, Silva MTC, Brandão SCC, Gomes JC, Peternelli LA, Franceschini SCC. Fatty acid composition of mature breast milk in Brazilian women. Food Chem. 2005; 93(2):297-303. doi:10.1016/j.foodchem.2004.09.026.

Patin RV, Vítolo MR, Valverde MA, Carvalho PO, Pastore GM, Lopez FA. The influence of sardine consumption on the omega-3 fatty acid content of mature human milk. J Pediatr. 2006; 86(1): 63-9. doi: 10.1590/S0021-75572006000100013.

Bener A, Galadari S, Gillett M, Osman N, Al-Taneiji H, Al-Kuwaiti MHH, et al. Fasting during the holy month of Ramadan does not change the composition of breast milk. Nutr Res. 2001(6); 21: 859-64. doi:10.1016/S0271-5317(01)00303-7.

DeLany JP, Windhauser MM, Champagne CM, Bray GA. Differential oxidation of individual dietary fatty acids in humans. Am J Clin Nutr. 2000; 72(4): 905-11.

Genzel-Boroviczeny O, Wahle J, Koleztko B. Fatty acids composition of human milk during the 1st month after term and preterm delivery. Eur J Pediatr. 1997; 156(2):142-7. doi: 10.1007/s004310050573.

Sala-Vila A, Castellote AI, Rodriguez-Palmero M, Campony C, López-Sabater MC. Lipid composition in human breast milk from Granada (Spain): changes during lactation. Nutrition. 2005; 21(4): 467-73. doi: 10.1016/j.nut.2004.08.020.

Mitoulas LR, Gurrin LC, Doherty DA, Sherriff JL, Hartmann PE. Infant intake of fatty acids from human milk over the first year of lactation. Br J Nutr. 2003; 90(5):979-86. doi: 10.1079/BJN2003979.

Koletzko B, Mrotzek M, Bremer HJ. Fatty acid composition of mature human milk in Germany. Am J Clin Nutr. 1988; 47(6):954-9.

Chardigny JM, Wolff RL, Mager E, Sébédio JL, Martine L, Juanéda P. Trans mono- and polyunsaturated fatty acids in human milk. Eur J Clin Nutr. 1995; 49(7):523-31.

Marín MC, Sanjurjo A, Rodrigo MA, Alaniz MJT. Long-chain polyunsaturated fatty acids in breast milk in La Plata, Argentina: relationship with maternal status. Prostag Leukotr Ess. 2005; 73(5):355-60. doi:10.1016/j.plefa.2005.07.005.

Krasevec JM, Jones PJ, Cabrera-Hernandez A, Mayer DL, Connor WE. Maternal and infant essential fatty acid status in Havana, Cuba. Am J Clin Nutr. 2002; 76(4):834-44.

Smit EN, Martini IA, Mulder H, Boersma ER, Muskiet FAJ. Estimated biological variation oh the mature human milk fatty acid composition. Prostag Leukotr Ess. 2002; 66(5-6):549-55. doi:10.1054/plef.2002.0398.

Glew RH, Elliot JA, Huang YS, Chuang LT, VanderJagt DJ. Constancy of the fluidity of the milk lipids of three different human populations. Nutr Res. 2002; 22(11):1231-41.

Kuipers RS, Fokkema MR, Smit EN, Meulen J, Boersma ER, Muskiet FAJ. High contents of both docosahexaenoic and arachidonic acids in milk of women consuming fish from lake Kitangiri (Tanzania): Targets for infant formulae close to our ancient diet? Prostag Leukotr Ess. 2005; 72(4): 279-88. doi:10.1016/j.plefa.2004.12.001.

Giovannini M, Agostoni C, Salari PC. The role of lipids in nutrition during the first months of life. J Inter Med Res. 1991; 19(5):351-62. doi:10.1038/sj.ejcn.1601810.

Carlson SE, Clandinin MT, Cook HW, Emken EA, Filer Jr LJ. Trans Fatty acids: infant and fetal development. Am J Clin Nutr. 1997; 66(3):717S-36S.

López-López A, Castellote-Bargalló AI, CampoyFolgoso C, Rivero-Urgel M, Tormo-Carnicé R, Infante-Pina D, et al. The influence of dietary palmitic acid triacylglyceride position on the fatty acid, calcium and magnesium contents of at term newborn faeces. Early Hum Dev. 2001; 65(Suppl 2):83S-94S. doi:10.1016/S0378-3782(01)00210-9.

Larqué E, Zamora S, Gil A. Dietary trans fatty acids affect the essential fatty-acid concentration of rat milk. J Nutr. 2000; 130(4):847-51.

Scrimgeour CM, MacVean A, Fernie CE, Sébédio JL, Riemersma RA. Dietary trans α-linolenic acid does not inhibit ∆5- and ∆6-desaturation of linoleico acid in man. Eur J Lipid Sci Technol. 2001; 103(6):341-49.

Chiara VL, Silva R, Jorge R, Brasil AP. Ácidos graxos trans: doenças cardiovasculares e saúde materno-infantil. Rev Nutr. 2002; 15(3):341-49. doi: 10.1590/S1415-52732002000300010.

Elias SL, Innis SM. Infant plasma trans, n-6, and n-3 fatty acids and conjugated linoleic acids are related to maternal plasma fatty acids, length of gestation, and birth weight and length. Am J Clin Nutr. 2001; 73(4):807-14.

Godfrey KM, Barker DJP. Fetal nutrition and adult disease. Am J Clin Nutr. 2000; 71(5):1344S-52S.

Costa AGV, Bressan J, Sabarense CM. Ácidos graxos trans: alimentos e efeitos na saúde. Arch Latinoam Nutr. 2006; 56(1):12-21.

Calder PC. n-3 polyunsaturated fatty acids, inflammation and immunity: pouring oil on troubled waters or another fishy tale? Nutr Res. 2001; 21(1):309-41. doi: 10.1016/S0271-5317(00)00287-6.

Simopoulos AP. The importance of ratio of omega6/omega-3 essential fatty acids. Biomed Pharmacother. 2002; 56(8):365-79. doi: 10.1159/000073788.

Nóbrega FJ, Amâncio OMS, Moraes RM, Marin P. Leite de nutrizes de alto e baixo nível econômico, eutróficas e desnutridas II. Ácidos graxos saturados e insaturados. J Pediatr. 1986; 60(1-2):29-36.

Hart SL, Boylan LM, Carroll SR, Musick YA, Kuratko C, Border BG, et al. Brief report: newborn behavior differs with docosahexaenoic acid levels in breast milk. J Pediatr Psychol. 2006; 31(2):221-6. doi: 10.1093/jpepsy/jsj069.

Dijck-Brouwer DAJ, Hadders-Algra M, Bouwstra H, Decsi T, Boehm G, Martini IA, et al. Lower fetal status of docosahexaenoic acid, arachidonic acid and essential fatty acids is associated with less favorable neonatal neurological condition. Prostag Leukotr Ess. 2005; 72(1):21-8. doi: 10.1016/j.plefa.2004.08.002.

Makrides M, Neumann M, Simmer K, Peter J, Gibson R. Are long-chain polyunsaturated fatty acids essential nutrients in infancy? Lancet. 1995; 345(8963):1463-8. doi:10.1016/S0140-6736(95)91035-2.

Lauritzen L, Jorgensen MH, Mikkelsen TB, Skovgaard IM, Straarup EM, Olsen SF, et al. Maternal fish oil supplementation in lactation: effect on visual acuity and n-3 fatty acid content of infant erythrocytes. Lipids. 2004; 39(3):195-206. doi: 10.1007/S11745-004-1220-8.

Downloads

Publicado

28-08-2023

Como Citar

Vasconcelos COSTA, A. G. ., & SABARENSE, C. M. . (2023). Modulação e composição de ácidos graxos do leite humano. Revista De Nutrição, 23(3). Recuperado de https://periodicos.puc-campinas.edu.br/nutricao/article/view/9380

Edição

Seção

ARTIGOS DE REVISÃO