Efeito da redução de ninhada sobre as respostas autonômicas e metabólicas de ratos Wistar

Autores

  • Wilson RINALDI Universidade Estadual de Maringá
  • Tatiane Aparecida da Silva RIBEIRO Universidade Estadual de Maringá
  • Angélica Sbrolini MARQUES Universidade Estadual de Maringá
  • Gabriel Sérgio FABRICIO Universidade Estadual de Maringá
  • Laize Peron TÓFOLO Universidade Estadual de Maringá
  • Rodrigo Mello GOMES Universidade Estadual de Maringá
  • Fagner Cordeiro Vilar MENDES Universidade Estadual de Maringá
  • Paulo Cezar de Freitas MATHIAS Universidade Estadual de Maringá

Palavras-chave:

Glicemia, Insulina, Obesidade, Sistema nervoso autonômico

Resumo

Objetivo
Este estudo investigou o perfil lipídico e a atividade elétrica dos nervos parassimpático (vago superior) e simpático (localizado na região esplâncnica) de ratos obesos oriundos de ninhada reduzida.

Métodos
Foram pesquisados dois grupos distintos, com 12 animas cada um: ninhada padrão, padronizado em nove filhotes por ninhada, e ninhada reduzida, três filhotes por ninhada. O consumo de ração e peso corporal foi acompanhado do desmame até o final do protocolo experimental. Aos 90 dias de idade, os animais foram anestesiados com (Thiopental®) e submetidos ao registro da atividade elétrica dos nervos simpático (vago) e parassimpático (da região esplâncnica); em seguida, foram sacrificados e retiradas e pesadas as gorduras retroperitoneal e periepididimal. Amostras de sangue foram coletadas para dosagens de glicemia, insulinemia, colesterol total, triglicerídeos e lipoproteína de alta densidade colesterol.

Resultados
Os ratos de ninhada reduzida apresentaram aumento da ingestão alimentar, peso corporal e tecido adiposo branco, quadros de hiperglicemia, hiperinsulinemia e hipercolesterolemia, aumento dos triglicérides e redução do lipoproteína de alta densidade colesterol.

Conclusão
Quanto à atividade do nervo vago, os ratos ninhada reduzida apresentaram um aumento significativo em relação aos ratos ninhada padrão, e mesmo não havendo diferença na atividade simpática, o modelo ninhada reduzida mostrou-se eficaz para indução da obesidade, dislipidemia, hipercolesterolemia, hiperinsulinemia, hiperglicemia e desequilíbrio autonômico em roedores.

Referências

Farmer SR. Molecular determinants of brown adipocyte formation and function. Genes Dev. 2008; 22(10):1269-75.

Berthoud HR. Homeostatic and non-homeostatic pathways involved in the control of food intake and energy balance. Obesity. 2006; 14(Suppl 5): S197-S200.

Pagano C, Marzolo M, Granzotto M, Ricquier D, Federspil G, Vettor R. Acute effects of exercise on circulating leptin in lean and genetically obese fa/fa rats. Biochem Biophys Res Commun. 1999; 255(3):698-702.

Yan ZC, Liu DY, Zhang LL, Shen CY, Ma QL, Cao TB, et al. Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor-delta. Biochem Biophys Res Commun. 2007; 354(2): 427-33.

Wisse BE, Kim F, Schwartz MW. Physiology. An integrative view of obesity. Science. 2007; 318 (5852):928-9.

Waki H, Tontonoz P. Endocrine functions of adipose tissue. Annu Rev Pathol. 2007; 2:31-56.

Lima SCV, Arraes RF, Almeida MG, Souza ZM, Pedrosa LFC. Perfil lipídico e peroxidação de lípidios no plasma em crianças e adolecentes com sobrepeso e obesidade. J Pediatr. 2004; 80:23-28.

Lunardi CC, Petroski EL. Body mass index, waist circumference and skinfolds for predicting lipid abnormalities in 11 years old children. Arq Bras Endocrinol Metabol. 2008; 52(6):1009-14.

Blundell JE. Perspective on the central control of appetite. Obesity. 2006; 14(Suppl 4):S160-S3.

Grill HJ. Distributed neural control of energy balance: contributions from hindbrain and hypothalamus. Obesity. 2006; 14(Suppl 5): S216- S21.

Young JB. Developmental origins of obesity: a sympathoadrenal perspective. Int J Obes (London). 2006; 30(Suppl 4):S41-S9.

German JP, Thaler JP, Wisse BE, Oh IS, Sarruf DA, Matsen ME, et al. Leptin activates a novel CNS mechanism for insulin-independent normalization of severe diabetic hyperglycemia. Endocrinology. 2011; 152(2):394-404.

Teff KL. Visceral nerves: vagal and sympathetic innervation. JPEN J Parenter Enteral Nutr. 2008; 32(5):569-71.

Benoit SC, Clegg DJ, Seeley RJ, Woods SC. Insulin and leptin as adiposity signals. Recent Prog Horm Res. 2004; 59:267-85.

Campos KE, Sinzato YK, Pimenta WP, Rudge MV, Damasceno DC. Effect of maternal obesity on diabetes development in adult rat offspring. Life Sci. 2007; 81(19-20):1473-8.

Bray GA, Paeratakul S, Popkin BM. Dietary fat and obesity: a review of animal, clinical and epidemiological studies. Physiol Behav. 2004; 83(4):549-55.

Plagemann A, Harder T, Rake A, Janert U, Melchior K, Rohde W, et al. Morphological alterations of hypothalamic nuclei due to intrahypothalamic hyperinsulinism in newborn rats. Int J Dev Neurosci. 1999; 17(1):37-44.

Plagemann A, Harder T, Rake A, Voits M, Fink H, Rohde W, et al. Perinatal elevation of hypothalamic insulin, acquired malformation of hypothalamic galaninergic neurons, and syndrome x-like alterations in adulthood of neonatally overfed rats. Brain Res. 1999; 836(1-2):146-55.

Rodrigues AL, Souza EP, Silva SV, Rodrigues DS, Nascimento AB, Barja-Fidalgo C, et al. Low expression of insulin signaling molecules impairs glucose uptake in adipocytes after early overnutrition. J Endocrinol. 2007; 195(3):485-94.

Rinaldi W, Gomes RM, Dias MJ, Marques AS, Scomparin DX, Martins AG, et al. O rompimento da homeostase glicêmica em ratos obesos oriundos de ninhadas reduzidas. Endocrinol Diabetes Clin Exp. 2008; 8(4):911-15.

Kiba T, Tanaka K, Inoue S, Endo O, Takamura Y. Comparison of DNA contents of visceral organs in rats with ventromedial hypothalamic lesions and fed a high fat diet. Neurosci Lett. 1991; 126(2): 127-30.

Yoshimatsu H, Oomura Y, Katafuchi T, Niijima A. Effects of hypothalamic stimulation and lesion on adrenal nerve activity. Am J Physiol. 1987; 253(3Pt 2):R418-24.

Plagemann A, Harder T, Rake A, Waas T, Melchior K, Ziska T, et al. Observations on the orexigenic hypothalamic neuropeptide Y-system in neonatally overfed weanling rats. J Neuroendocrinol. 1999; 11(7):541-6.

Torrezan R, Rodrigo MG, Ferrarese M, Melo FB Ramos AMD, Mathias PCF, et al. Treatmet with isoflavones replaces estradiol effect on tissue fat accumulation from ovariectomized rats. Arq Bras Endocrinol Metabol. 2008; 52(9):1489-96.

Leon-Quinto T, Magnan C, Portha B. Altered activity of the autonomous nervous system as a determinant of the impaired beta-cell secretory response after protein-energy restriction in the rat. Endocrinology. 1998; 139(8):3382-9.

Bernardis LL, Patterson BD. Correlation between “Lee Index” and carcass fat content in weanling and adults female rats with hypothalamic lesions. J Endocrinol. 1968; 40(4):527-28.

Plagemann A. Perinatal programming and functional teratogenesis: impact on body weight regulation and obesity. Physiol Behav. 2005; 86(5): 661-8.

Plagemann A, Heidrich I, Gotz F, Rohde W, Dorner G. Obesity and enhanced diabetes and cardiovascular risk in adult rats due to early postnatal overfeeding. Exp Clin Endocrinol. 1992; 99(3):154-8.

Elfers C, Ralston M, Roth CL. Studies of different female rat models of hypothalamic obesity. J Pediatr Endocrinol Metab. 2011; 24(3-4):131-7.

Amaral AG, Rafacho A, Oliveira CAM, Batista TM, Ribeiro RA, Latorraca MQ, et al. Leucine supplementation augments insulin secretion in pancreatic islets of malnourished mice. Pancreas. 2010; 39(6):847-55.

Harder T, Rake A, Rohde W, Doerner G, Plagemann A. Overweight and increased diabetes susceptibility in neonatally insulin-treated adult rats. Endocr Regul. 1999; 33(1):25-31.

Nascimento AF, Sugizaki MM, Leopoldo AS, Lima-Leopoldo AP, Luvizotto RA, Nogueira CR, et al. A hypercaloric pellet-diet cycle induces obesity and co-morbidities in Wistar rats. Arq Bras Endocrinol Metabol. 2008; 52(6):968-74.

Hahn P. Effect of litter size on plasma cholesterol and insulin and some liver and adipose tissue enzymes in adult rodents. J Nutr. 1984; 114(7): 1231-4.

Mitrani P, Srinivasan M, Dodds C, Patel MS. Autonomic involvement in the permanent metabolic programming of hyperinsulinemia in the high-carbohydrate rat model. Am J Physiol Endocrinol Metab. 2007; 292(5):E1364-77.

Martins AGB, Branco RCS, Candido IC, Dias MJ, Rinaldi W, de Oliveira JC, et al. Dependência da atividade no controle glicêmico de ratos. Endocrinol Diabetes Clin Experim. 2008; 8(4):906-10.

Scheurink AJ, Steffens..AB, Gaykema RP. Hypothalamic adrenoceptors mediate sympathoadrenal activity in exercising rats. Am J Physiol. 1990; 259(3 Pt 2): R470-7.

Kubera B, Hubold C, Zug S, Wischnath H, Wilhelm I, Hallschmid M, et al. The brain’s supply and demand in obesity. Front Neuroenergetics. 2012; 4:4.

Balbo SL, Grassiolli S, Ribeiro RA, Bonfleur ML, Gravena C, Brito MN, et al. Fat storage is partially dependent on vagal activity and insulin secretion of hypothalamic obese rat. Endocrine. 2007; 31(2): 142-8.

Patterson CM, Levin BE. Role of exercise in the central regulation of energy homeostasis and in the prevention of obesity. Neuroendocrinology. 2008; 87(2):65-70.

Lausier J, Diaz WC, Roskens V, LaRock K, Herzer K, Fong CG, et al. Vagal control of pancreatic ss-cell proliferation. Am J Physiol Endocrinol Metab. 2010; 299(5):E786-93.

Downloads

Publicado

17-08-2023

Como Citar

RINALDI, W., Aparecida da Silva RIBEIRO, T. ., Sbrolini MARQUES, A. ., FABRICIO, G. S., Peron TÓFOLO, L. ., Mello GOMES, R., … de Freitas MATHIAS, P. C. (2023). Efeito da redução de ninhada sobre as respostas autonômicas e metabólicas de ratos Wistar. Revista De Nutrição, 25(3). Recuperado de https://periodicos.puc-campinas.edu.br/nutricao/article/view/9248

Edição

Seção

ARTIGOS ORIGINAIS