Aspectos recentes da absorção e biodisponibilidade do zinco e suas correlações com a fisiologia da isoforma testicular da Enzima Conversora de Angiotensina

Autores

  • Gilberto Simeone HENRIQUES Universidade de São Paulo
  • Mário Hiroiuki HIRATA Universidade de São Paulo
  • Sílvia Maria Franciscato COZZOLINO Universidade de São Paulo

Palavras-chave:

zinco, enzima conversora de angiotensina, disponibilidade biológica, função testicular, enzimas

Resumo

A associação estável a macromoléculas e a flexibilidade da esfera de coordenação são propriedades intrínsecas do zinco e sua essencialidade encontra-se intimamente relacionada ao seu papel biológico, seja na ativação da função catalítica de enzimas, seja na estabilização das estruturas conformacionais de proteínas e ácidos nucléicos. O zinco é o segundo elemento traço essencial mais abundante no organismo humano e é necessário à atividade de mais de 300 enzimas dos 6 tipos de classes existentes. Estas características tornaram o metal e seus ligantes fontes de grande interesse para a nutrição experimental, já que o seu estudo converge para a determinação da biodisponibilidade do metal. Dentre esses ligantes, a isoforma testicular da Enzima Conversora de Angiotensina, sintetizada pelas células germinais masculinas, pode ser considerada um exemplo marcante de regulação molecular a partir da ligação do zinco, influenciando tanto a atividade quanto a concentração desta enzima e conseqüentemente a função testicular.

Referências

Blanchard RK, Cousins RJ. Differential display of intestinal mRNA’s regulated by dietary zinc. Proc Natl Acad Sci USA 1996; 93:6863-8.

Chen X, Agarwal A, Giedroc DP. Structural and functional heterogeneity among the zinc fingers of human MRE-binding transcription factor-1. Biochemistry 1998; 37(32):11152-61.3. Blanchard RK, Cousins RJ. Regulation of intestinal gene expression by dietary zinc: Induction of uroguanylin mRNA by zinc deficiency. J Nutr 2000; 130:1393S-8S.

Coleman JE. Zinc proteins: enzymes, storage proteins, transcription factors and replication proteins. Ann Rev Biochem 1992; 61:897-946.

Valee BL, Falchuk KH. The biochemical basis of zinc physiology. Physiol Rev 1993; 73:79-111.

Valee BL, Auld DS. Zinc coordination, function and structure of zinc enzymes and other proteins. Biochemistry 1990; 29:5647-59.

Valee BL, Auld DS. New perspectives on zinc biochemistry: cocatalytic sites in multi-zinc enzymes. Biochemistry 1993; 32:6493-500.

Ippolito JA, Baird TT, McGee SA, Christianson DW, Fierke CA. Structure-assisted redesign of a protein- -zinc binding site with femtomolar affinity. Proc Natl Acad Sci 1995; 92:5017-21.

Butler A. Acquisition and utilization of transition metal ions by marine organisms. Sci Am 1998; 281:207-9.

Kaim W, Schwederski B. Zinc: structural gene- -regulatory functions and the enzymatic catalysis of hydrolysis or condensation reactions. In: Kaim W, Schwederski B, editors. Bioinorganic chemistry: inorganic elements in the chemistry of life, an introduction and guide. West Sussex: Wiley; 1996. p.242-64.

Margoshes M, Valee BL. A cadmium-and-zinc containing protein from equine kidney cortex. J Am Chem Soc 1957; 79(17):4813-4.

Kägi JHR. Metallothionein III. Experientia 1993; 53(suppl):29-55.

Salgueiro MJ, Zubillaga M, Lysionek A, Sarabia MI, Caro R, De Paoli T, et al. Zinc as an essential micronutrient: a review. Nutr Res 2000; 20(5):737-55.

Hempe JM, Cousins RJ. Cysteine-rich intestinal protein and intestinal metallothionein: an inverse relationship as a conceptual model for zinc absorption in rats. J Nutr 1992; 122(1):89-95.

Finley JW, Briske-Anderson M, Reeves PG, Johnson LK. Zinc uptake and transcellular movement by CACO-2 cells: studies with media containing fetal bovine serum. J Nutr Biochem 1995; 6:137-44.

Cousins RJ, MCmahon RJ. Integrative aspects of zinc transporters. J Nutr 2000; 30:1384S-7S.

Cozzolino SMF. Biodisponibilidade mineral. Rev Nutr 1997; 10(2):87-98.

Krebs NF. Overview of zinc absorption and excretion in the human gastrointestinal tract. J Nutr 2000; 130:1374S-7S.

King JC, Shames DM, Woodhouse LR. Zinc homeostasis in humans. J Nutr 2000; 130:1360S-6S.

Beshgetoor D, Lönerdal B. Effect of marginal maternal zinc deficiency in rats on mammary gland zinc metabolism. J Nutr Biochem 1997; 8:573-8.

Cousins RJ. Zinc. In: Ziegler EE, Filer LJ, editors. Present Knowledge in nutrition. Washington: ILSI Press; 1996. p.293-306.

O’Dell BL. Effect of dietary components upon zinc availability. Am J Clin Nutr 1969; 22(10):1315-22.

Hoadley JE, Leinart AS, Cousins AS. Kinetic analisys of zinc uptake and serosal transfer by vascularly perfused rat intestine. Am J Physiol 1987; 252:G825-31.

Mason KE, Burns WA, Smith JC. Testicular damage associated with zinc deficiency in pre-and postpubertal rats: Response to zinc repletion. J Nutr 1982; 112:1019-28.

Reeves PG, O’Dell BL. Effects of dietary zinc deprivation on the activity of angiotensin-converting enzyme in serum of rats and guinea pigs. J Nutr 1986; 116:128-34.

Jackson MJ. The assessments of bioavailability of micronutrients: Introduction. Eur J Clin Nutr 1997; 51(suppl):S1-S2.

Mawson CA, Fischer MI. Zinc in genital organs of rat. Nature 1951; 167(4156):859.

Reeves PG. Copper status of adult male rats is not affected by feeding an AIN 93G-based diet containing high concentrations of zinc. J Nutr Biochem 1996; 7:166-72.

Skeggs LT, Marsh WH, Kahn JR., Shumway NP. The existence of two forms of hypertensin. J Exp Med 1954; 99:275-82.

Skeggs LT, Kahn JR, Shumway NP. The preparation and function of the hypertensin-converting enzyme. J Exp Med 1956; 103:295.

Ehlers MRW, Riordan JF. Angiotensin-converting enzyme: Zinc-and inhibitor-binding stoichiometries of the somatic and testis isozymes. Biochemistry 1991; 30:7118-26.

Velletri PA, Aquilano DR, Brucknick E, Tsai-Morris CH, Dufau ML, Lovemberg W. Endocrinological control and cellular localization of rat testicular

angiotensin-converting enzyme (EC 3.4.15.1). Endocrinology 1985; 116(6):2516-22.

Ehlers MR, Fox EA, Strydom DJ, Riordan JF. Molecular cloning of human testicular angiotensin-converting enzyme: the testis isozyme is identical to the C-terminal half of endothelial angiotensin-converting enzyme. Proc Natl Acad Sci USA1989; 86(20):7741-5.

Howard TE, Shai S, Langford KG, Martin BM, Bernstein KE. Transcription of testicular angiotensin-converting enzyme (ACE) is initiated within the 12th intron of the somatic ACE gene. Mol Cell Biol 1990; 10(8):4294-303.

Kessler SP, Rowe TM, Blendy JA, Erickson RP, Sem GC. A cyclic AMP response element in the angiotensin-converting enzyme gene and the transcription factor CREM are required for transcription of the mRNA for the testicular isozyme. J Biol Chem 1998; 273:9971-5.

Delmas V, Sassone-Corsi P. The key role of CREM in the cAMP signaling pathway in the testis. Mol Cell Endocrinol 1994; 100:121-4.

Ha H., van Wijnen AJ, Hecht NB. Tissue-specific protein-DNA interactions of the mouse protamine 2 gene promoter. J Cell Biochem 1997; 64: 95-105.

Reeves PG, Rossow KL. Zinc deficiency affects the activity and protein concentration of angiotensinconverting enzyme in rat testes. Proc Soc Exp Biol Med 1993; 203:336-42.

Stallard L, Reeves PG. Zinc deficiency in adult rats reduces the relative abundance of testis-specific Angiotensin-converting enzyme mRNA. J Nutr 1997; 127:25-9.

Henriques GS, Cozzolino SMF. Determination of metallothionein levels in tissues of young rats fed zinc-enriched diets. Rev Nutr 2001; 14(3):163-9.

Om AS, Chung KW. Dietary zinc deficiency alters 5 α-reduction and aromatization of testosterone and androgen and estrogen receptors in rat liver. J Nutr 1996; 126:842-8.

Foresta C, Mioni R, Rossato M, Varotto A, Zorzi M. Evidence for the involvement of sperm angiotensin converting enzyme in fertilization. Int J Androl 1991; 14:333-9.

Hagaman JR, Moyer JS, Bachman ES, Sibony M, Magyar PL, Welch JE, et al. Angiotensin-converting enzyme and male fertility. Proc Natl Acad Sci USA 1998; 95(5):2552-7.

Ramaraj P, Kessler SP, Colmenares C, Sem GC. Selective restoration of male fertility in mice lacking angiotensin-converting enzymes by sperm-specific expression of the testicular enzyme. J Clin Invest 1998; 102:371-78.

Downloads

Publicado

25-09-2003

Como Citar

HENRIQUES, G. S., Hiroiuki HIRATA, M. ., & Franciscato COZZOLINO, S. M. . (2003). Aspectos recentes da absorção e biodisponibilidade do zinco e suas correlações com a fisiologia da isoforma testicular da Enzima Conversora de Angiotensina. Revista De Nutrição, 16(3). Recuperado de https://periodicos.puc-campinas.edu.br/nutricao/article/view/9147

Edição

Seção

ARTIGOS DE REVISÃO