Comparação de equações preditivas de taxa metabólica de repouso com calorimetria indireta em mulheres pós-menopáusicas
Palavras-chave:
Metabolismo basal, Calorimetria indireta, MenopausaResumo
Objetivo
Comparar os valores de taxa metabólica de repouso determinados por calorimetria indireta com os valores obtidos utilizando diferentes equações preditivas em mulheres pós-menopausicas eutróficas e com sobrepeso.
Métodos
Vinte e quatro mulheres com pelo menos dois anos de menopausa foram submetidas à avaliações antropométricas e à calorimetria indireta após 12 horas de jejum para determinar, matematicamente e experimentalmente, a taxa metabólica de repouso.
Resultados
Os valores para calorimetria indireta não diferiram entre os grupos e a taxa metabólica de repouso predita por equações foi diferente para todas as equações usadas. Para o grupo de eutróficas, as equações que não foram estatisticamente diferentes da calorimetria indireta foram Food and Agricultural Organization, Fredix, Lazzer e Schofield. No entanto, apenas as equações Berstein e Owen foram significativamente diferentes comparadas com calorimetria indireta para o grupo sobrepeso.
Conclusão
O presente estudo sugere que diferenças na composição corporal em mulheres na pós-menopausa modificam a precisão de equações que predizem a taxa metabólica de repouso, demonstrando a necessidade de aprimorar métodos de estimação de taxa metabólica de repouso em mulheres pós-menopáusicas com diferentes composições corporais.
Referências
Santoro N, Chervenak JL. The menopause transition. Endocrinol Metab Clin North Am. 2004;33(4):627-36.
Fearon IM, Faux SP. Oxidative stress and cardiovascular disease: Novel tools give (free) radical insight. J Mol Cell Cardiol. 2009;47(3):372-81.
Roza AM, Shizgal HM. The Harris Benedict equation reevaluated: Resting energy requirements and the body cell mass. Am J Clin Nutr. 1984;40(1):168-82.
Ferrannini E. The theoretical bases of indirect calorimetry: A review. Metabolim. 1988;37(3):287-301.
Reeves MM, Capra S. Variation in the application of methods used for predicting energy requirements in acutely ill adult patients: A survey of practice. Eur J Clin Nutr. 2003;57(12):1530-5.
Arciero PJ, Goran MI, Gardner AM, Ades PA, Tyzbir RS, Poehlman ET. A practical equation to predict resting metabolic rate in older females. J Am Geriatr Soc. 1993;41(4):389-95.
Weijs PJ. Validity of predictive equations for resting energy expenditure in US and Dutch overweight and obese class I and II adults aged 18-65 y. Am J Clin Nutr. 2008;88(4):959-70.
Frankenfield DC, Rowe WA, Smith JS, Cooney RN. Validation of several established equations for resting metabolic rate in obese and nonobese people. J Am Diet Assoc. 2003;103(9):1152-9.
Dobratz JR, Sibley SD, Beckman TR, Valentine BJ, Kellogg TA, Ikramuddin S, et al. Predicting energy expenditure in extremely obese women. JPEN J Parenter Enteral Nutr. 2007;31(3):217-27.
Frankenfield D, Roth-Yousey L, Compher C. Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: A systematic review. J Am Diet Assoc. 2005;105(5):775-89.
Bonganha V, Libardi CA, Santos CF, De Souza GV, Conceicao MS, Chacon-Mikahil MP, et al. Predictive equations overestimate the resting metabolic rate in postmenopausal women. J Nutr Health Aging. 2013;17(3):211-4.
De Lorenzo A, Tagliabue A, Andreoli A, Testolin G, Comelli M, Deurenberg P. Measured and predicted resting metabolic rate in Italian males and females, aged 18-59 y. Eur J Clin Nutr. 2001;55(3):208-14.
Luhrmann PM, Neuhaeuser Berthold M. Are the equations published in literature for predicting resting metabolic rate accurate for use in the elderly? J Nutr Health Aging. 2004;8(3):144-9.
Krüger RL, Lopes AL, Gross JS, Macedo RCO, Teixeira BC, Oliveira ÁR. Validation of predictive equations for basal metabolic rate in eutrophic and obese subjects. Rev Bras Cineantropom Desempenho Hum. 2015;17(1):73-81.
Marfell-Jones M, Olds T, Stewart A, Carter L. International Standards for anthropometric assessment. Potchefstroom: North-West University; 2006.
Lopes AL, Sant’ Ana RT, Baroni BM, Cunha GdS, Cunha GS, Radaelli R, et al. Perfil antropométrico e fisiológico de atletas brasileiros de “rugby”. Rev Bras Educ Fís Esporte. 2011;25(3):387-95.
Trumbo P, Schlicker S, Yates AA, Poos M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc. 2002;102(11):1621-30.
Weir JB. New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol. 1949;109(1-2):1-9.
Bernstein RS, Thornton JC, Yang MU, Wang J, Redmond AM, Pierson RN Jr., et al. Prediction of the resting metabolic rate in obese patients. Am J Clin Nutr. 1983;37(4):595-602.
World Health Organization. Energy and protein requirements. Geneva: WHO; 1985.
Fredrix EW, Soeters PB, Deerenberg IM, Kester AD, von Meyenfeldt MF, Saris WH. Resting and sleeping energy expenditure in the elderly. Eur J Clin Nutr. 1990;44(10):741-7.
Harris JA, Benedict FG. A biometric study of human basal metabolism. Proc Natl Acad Sci USA. 1918;4(12):370-3.
Henry CJ. Basal metabolic rate studies in humans: Measurement and development of new equations. Public Health Nutrition. 2005;8(7A):1133-52.
Huang KC, Kormas N, Steinbeck K, Loughnan G, Caterson ID. Resting metabolic rate in severely obese diabetic and nondiabetic subjects. Obes Res. 2004;12(5):840-5.
Johnstone AM, Rance KA, Murison SD, Duncan JS, Speakman JR. Additional anthropometric measures may improve the predictability of basal metabolic rate in adult subjects. Eur J Clin Nutr. 2006;60(12):1437-44.
Korth O, Bosy-Westphal A, Zschoche P, Gluer CC, Heller M, Muller MJ. Influence of methods used in body composition analysis on the prediction of resting energy expenditure. Eur J Clin Nutn. 2007;61(5):582-9.
Lazzer S, Agosti F, Resnik M, Marazzi N, Mornati D, Sartorio A. Prediction of resting energy expenditure in severely obese Italian males. J Endocrinol Invest. 2007;30(9):754-61.
Livingston EH, Kohlstadt I. Simplified resting metabolic rate-predicting formulas for normalsized and obese individuals. Obes Res. 2005;13(7):1255-62.
Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr. 1990;51(2):241-7.
Muller MJ, Bosy-Westphal A, Klaus S, Kreymann G, Luhrmann PM, Neuhauser-Berthold M, et al. World Health Organization equations have shortcomings for predicting resting energy expenditure in persons from a modern, affluent population: Generation of a new reference standard from a retrospective analysis of a German database of resting energy expenditure. Am J Clin Nutr. 2004;80(5):1379-90.
Owen OE, Kavle E, Owen RS, Polansky M, Caprio S, Mozzoli MA, et al. A reappraisal of caloric requirements in healthy women. Am J Clin Nutr. 1986;44(1):1-19.
Schofield WN. Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr. 1985;39(Suppl.1):5-41.
Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307-10.
Santos RD, Suen VM, Marchini JS, Iannetta O. What is the best equation to estimate the basal energy expenditure of climacteric women?
Climacteric. 2011;14(1):112-6.
Frankenfield DC. Bias and accuracy of resting metabolic rate equations in non-obese and obese adults. Clin Nutr. 2013;32(6):976-82.
Douglas CC, Lawrence JC, Bush NC, Oster RA, Gower BA, Darnell BE. Ability of the Harris Benedict formula to predict energy requirements differs with weight history and ethnicity. Nutr Res. 2007;27(4):194-9.
Schusdziarra V, Wolfschlager K, Hausmann M, Wagenpfeil S, Erdmann J. Accuracy of resting energy expenditure calculations in unselected overweight and obese patients. Ann Nutr Metabol. 2014;65(4):299-309.
Haugen HA, Melanson EL, Tran ZV, Kearney JT, Hill JO. Variability of measured resting metabolic rate. Am J Clin Nutr. 2003;78(6):1141-5.
Ravussin E, Swinburn BA. Metabolic predictors of obesity: Cross-sectional versus longitudinal data. Int J Obes. 1993;17(Suppl.3):S28-31.
Muller MJ, Bosy-Westphal A, Kutzner D, Heller M. Metabolically active components of fat-free mass and resting energy expenditure in humans: Recent lessons from imaging technologies. Obes Rev. 2002;3(2):113-22.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Randhall Bruce CARTERI, Marceli FELDMANN, Júlia Silveira GROSS, Renata Lopes KRUGER, André Luis LOPES, Álvaro REISCHAK-OLIVEIRA
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.