O efeito preventivo da taxifolina em danos cardíacos induzidos por acrilamida em ratos
Palavras-chave:
Acrilamida, Dano oxidativo ao coração, Rato, TaxofilinaResumo
Objetivo
A acrilamida é um composto tóxico amplamente utilizado em setores industriais. Ela causa a formação de reativas de oxigênio e subsequente reação de peroxidação lipídica, que desempenham um papel importante na patogênese do dano oxidativo. A taxifolina é um flavonóide com propriedades antioxidantes que inibe a formação de reativas de oxigênio. Neste estudo, o objetivo foi investigar o efeito preventivo da taxifolina no dano cardíaco oxidativo induzido por acrilamida.
Métodos
Os ratos foram divididos em três grupos: Acrilamida, Acrilamida+Taxifolina e grupo Saudável. Ingestão de água e comida e alterações de peso corporal dos animais foram registradas diariamente. Malondialdeído, glutationa total, fator nuclear kappa-B, estado oxidante total e estado antioxidante total foram analisados no tecido cardíaco dos ratos. Os níveis de troponina-I, – parâmetro conhecido como biomarcador cardíaco, foram analisados a partir de amostra de sangue. Um exame histopatológico cardíaco também foi realizado.
Resultados
Nos animais do grupo Acrilamida, os níveis de malondialdeído, fator nuclear kappa-B, estado oxidante total e troponina-I foram significativamente maiores em comparação com os do grupo Acrilamida+Taxifolina e Saudável. Os níveis de glutationa total e estado antioxidante total foram significativamente mais baixos em comparação com grupos Acrilamida+Taxifolina e Saudável. Além disso, no grupo Acrilamida, o ganho de peso corporal e a ingestão de alimentos e água diminuíram significativamente em comparação com os animais dos grupos Acrilamida+Taxifolina e Saudável. No entanto, no grupo Acrilamida+Taxifolina, a suplementação com taxifolina aproximou esses valores aos do grupo Saudável. Além disso, o tratamento com taxifolina melhorou os sinais de dano miocárdico estrutural induzidos pela acrilamida.
Conclusão
A exposição à acrilamida induziu significativamente o dano oxidativo do tecido cardíaco dos ratos. A taxifolina foi capaz de melhorar as consequências tóxicas da acrilamida bioquímica e histopatologicamente, possivelmente devido às suas propriedades antioxidantes.
Referências
Mousavi Khaneghah A, Fakhri Y, Nematollahi A, Seilani F, Vasseghian Y. The concentration of acrylamide in different food products: a global systematic review, meta-analysis, and meta-regression. Food Rev Int. 2020:1-19. https://doi. org/10.1080/87559129.2020.1791175
Maan AA, Anjum MA, Khan MKI, Nazir A, Saeed F, Afzaal M, et al. Acrylamide formation and different mitigation strategies during food processing: a review. Food Rev Int 2020:1-18. https://doi.org/10.1080/87559129.2020.1719505
Iriondo-DeHond A, Elizondo AS, Iriondo-DeHond M, Ríos MB, Mufari R, Mendiola JA, et al. Assessment of healthy and harmful maillard reaction products in a novel coffee cascara beverage: melanoidins and acrylamide. Foods. 2020;9(5):620. https://doi.org/10.3390/foods9050620
Yoosefian M, Pakpour A, Zahedi M. Carboxylated single-walled carbon nanotubes as a semiconductor for adsorption of acrylamide in mainstream cigarette smoke. Physica E. 2020;124:114299. https://doi.org/10.1016/j.physe.2020.114299
Pelucchi C, Rosato V, Bracci P, L-D, Neale R, Lucenteforte E, et al. Dietary acrylamide and the risk of pancreatic cancer in the International Pancreatic Cancer Case: Control Consortium (PanC4). Ann Oncol. 2017;28(2):408-14. https://doi.org/10.1093/annonc/mdw618
Guo J, Cao X, Hu X, Li S, Wang J. The anti-apoptotic, antioxidant and anti-inflammatory effects of curcumin on acrylamide-induced neurotoxicity in rats. BMC Pharmacol Toxicol. 2020;21(1):1-10. https://doi.org/10.1186/s40360-020-00440-3
Atabati H, Abouhamzeh B, Abdollahifar M-A, Javadinia SS, GharibianBajestanie S, Atamaleki A, et al. The association between high oral intake of acrylamide and risk of breast cancer: an updated systematic review and meta-analysis. Trends Food Sci Tech. 2020;100:155-63. https://doi.org/10.1016/j.tifs.2020.04.006
Sadat Yousefsani B, Akbarizadeh N, Pourahmad J. The antioxidant and neuroprotective effects of Zolpidem on acrylamide-induced neurotoxicity using Wistar rat primary neuronal cortical culture. Toxicol Rep. 2020;7:233-40. https://doi.org/10.1016/j.toxrep.2020.01.010
Huang M, Jiao J, Wang J, Xia Z, Zhang Y. Characterization of acrylamide-induced oxidative stress and cardiovascular toxicity in zebrafish embryos. J Hazard Mater. 2018;347:451-60. https://doi.org/10.1016/j.jhazmat.2018.01.016
Foroutanfar A, Mehri S, Kamyar M, Tandisehpanah Z, Hosseinzadeh H. Protective effect of punicalagin, the main polyphenol compound of pomegranate, against acrylamide-induced neurotoxicity and hepatotoxicity in rats. Phytother Res. 2020;34(12):3262-72. https://doi.org/10.1002/ptr.6774
Oppedisano F, Macrì R, Gliozzi M, Musolino V, Carresi C, Maiuolo J, et al. The anti-inflammatory and antioxidant properties of n-3 PUFAs: their role in cardiovascular protection. Biomedicines. 2020;8(9):306. https://doi.org/10.3390/biomedicines8090306
Kalinina I, Potoroko I, Sonawane SH. Sonochemical encapsulation of taxifolin into cyclodextrine for improving its bioavailability and bioactivity for food. In Sonawane SH, Bhanvase BA, Sivakumar M, editors. Encapsulation of active molecules and their delivery system. New York: Elsevier; 2020. p. 85-102.
Bedir F, Kocatürk H, Yapanoğlu T, Gürsul C, Arslan R, Mammadov R, et al. Protective effect of taxifolin against prooxidant and proinflammatory kidney damage associated with acrylamide in rats. Biomed Pharmacother. 2021;139:111660. https://doi.org/10.1016/j.biopha.2021.111660
Salaritabar A, Darvishi B, Hadjiakhoondi F, Manayi A, Sureda A, Nabavi SF, et al. Therapeutic potential of flavonoids in inflammatory bowel disease: a comprehensive review. World J Gastroenterol. 2017;23(28):5097-5114. https://doi.org/10.3748/wjg.v23.i28.5097
Ahiskali I, Pinar CL, Kiki M, Cankaya M, Kunak CS, Altuner D. Effect of taxifolin on methanol-induced oxidative and inflammatory optic nerve damage in rats. Cutan Ocul Toxicol. 2019;38(4):384-89. https://doi.org/10.1080/15569527.2019.1637348
Chen X, Gu N, Xue C, Li BR. Plant flavonoid taxifolin inhibits the growth, migration and invasion of human osteosarcoma cells. Mol Med Rep. 2018;17(2):3239-45. https://doi.org/10.3892/mmr.2017.8271
Terekhov RP, Selivanova IA, Tyukavkina NA, Ilyasov IR, Zhevlakova AK, Dzuban AV, et al. Assembling the puzzle of taxifolin polymorphism. Molecules. 2020;25(22):5437. https://doi.org/10.3390/molecules25225437
Alpan AL, Kızıldağ A, Özdede M, Karakan NC, Özmen Ö. The effects of taxifolin on alveolar bone in experimental periodontitis in rats. Arch Oral Biol. 2020;117:104823. https://doi.org/10.1016/j.archoralbio.2020.104823
Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351-8. https://doi.org/10.1016/0003-2697(79)90738-3
Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968;25:192-205. https://doi.org/10.1016/0003-2697(68)90092-4
Erel O. A new automated colorimetric method for measuring total oxidant status. Clin biochem. 2005;38(12):1103-11. https://doi.org/10.1016/j.clinbiochem.2005.08.008
Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem. 2004;37(2):112-9. https://doi.org/10.1016/j.clinbiochem.2003.11.015
Ibrahim MA, Ibrahem MD. Acrylamide-induced hematotoxicity, oxidative stress, and DNA damage in liver, kidney, and brain of catfish (Clarias gariepinus). Environ Toxicol. 2020;35(2):300-8. https://doi.org/10.1002/tox.22863
Abdel-Daim MM, Abo El-Ela FI, Alshahrani FK, Bin-Jumah M, Al-Zharani M, Almutairi B, et al. Protective effects of thymoquinone against acrylamide-induced liver, kidney and brain oxidative damage in rats. Environ Sci Pollut Res Int. 2020;27(30):37709-17. https://doi.org/10.1007/s11356-020-09516-3
Mårtensson J, Jain A, Meister A. Glutathione is required for intestinal function. Proc Natl Acad Sci . 1990;87(5):1715-9. https://doi.org/10.1073/pnas.87.5.1715
Kushwah AS, KALIA TS. Quercetin attenuates oxidative stress, inflammation and cardiac dysfunction in acrylamideinduced cardiotoxicity. Acta Pol Pharm. 2020;77(2):343-52. https://doi.org/10.32383/appdr/110094
Yousef MI, El-Demerdash FM. Acrylamide-induced oxidative stress and biochemical perturbations in rats. Toxicology. 2006;219(1-3):133-41. https://doi.org/10.1016/j.tox.2005.11.008
Valentova M, Anker SD, von Haehling S. Cardiac cachexia revisited: the role of wasting in heart failure. Heart Fail Clin. 2020;16(1):61-9. https://doi.org/10.1016/j.hfc.2019.08.006
Hou J, Hu M, Zhang L, Gao Y, Ma L, Yan X, et al. Dietary taxifolin potently protects against dextran sulfate sodium-induced colitis via NF-κB signaling, enhancing ıntestinal barrier and modulating gut microbiota. Front Immunol. 2020;11:3915. https://doi.org/10.3389/fimmu.2020.631809
Tang Z, Yang C, Zuo B, Zhang Y, Wu G, Wang Y, et al. Taxifolin protects rat against myocardial ischemia/reperfusion injury by modulating the mitochondrial apoptosis pathway. PeerJ. 2019;7:e6383. https://doi.org/10.7717/peerj.6383
Unver E, Tosun M, Olmez H, Kuzucu M, Cimen FK, Suleyman Z. The effect of taxifolin on cisplatin-induced pulmonary damage in rats: a biochemical and histopathological evaluation. Mediators Inflamm. 2019;2019:1-7. https://doi.org/10.1155/2019/3740867
Li X, Xie H, Jiang Q, Wei G, Lin L, Li C, et al. The mechanism of (+) taxifolin’s protective antioxidant effect for OH-treated bone marrow-derived mesenchymal stem cells. Cell Mol Biol Lett. 2017;22(1):1-11. https://doi.org/10.1186/s11658-017-0066-9
Marković J, Stošić M, Kojić D, Matavulj M. Effects of acrylamide on oxidant/antioxidant parameters and CYP2E1 expression in rat pancreatic endocrine cells. Acta Histochem. 2018;120(2):73-83. https://doi.org/10.1016/j.acthis.2017.12.001
Zakaria N, Khalil SR, Awad A, Khairy GM. Quercetin reverses altered energy metabolism in the heart of rats receiving adriamycin chemotherapy. Cardiovasc Toxicol. 2018;18(2):109-19. https://doi.org/10.1007/s12012-017-9420-4
Mair J, Lindahl B, Hammarsten O, Müller C, Giannitsis E, Huber K, et al. How is cardiac troponin released from injured myocardium? Eur Heart J Acute Cardiovasc Care. 2018;7(6):553-60. https://doi.org/10.1177/2048872617748553
Sarkisian L, Saaby L, Poulsen TS, Gerke O, Jangaard N, Hosbond S, et al. Clinical characteristics and outcomes of patients with myocardial infarction, myocardial injury, and nonelevated troponins. Am J Med. 2016;129(4):e5-e21. https://doi.org/10.1016/j.amjmed.2015.11.006
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.