Physical fitness and nutritional status in female adolescents with anorexia nervosa
Palavras-chave:
Anorexia Nervosa, Exercise test, Female adolescents, Muscle strengthResumo
Objective
This study aimed to determine whether physical fitness is related to nutritional status in a sample of female adolescents with anorexia nervosa, to contrast the nourished and undernourished patients, and to compare the physical fitness in these patients with normative data of healthy subjects stratified by age and gender.
Methods
Nutritional status was determined using the body mass index Z-score, fat mass, fat-free mass (bioelectrical impedance analysis), and the Controlling Nutritional Status score in 15 anorexic adolescents with 14.3±1.6 years. Physical fitness was assessed using the ALPHA-Fitness Battery (handgrip strength, standing broad jump, 4x10m shuttle run, and 20m shuttle run tests).
Results
Handgrip strength was significantly associated with all variables of nutritional status, except with the three blood components of the Controlling Nutritional Status score. The undernourished anorexic patients showed significantly worse physical fitness than the nourished anorexic patients in all tests, except in the standing broad jump and the 4x10m shuttle run tests. The physical fitness tests of the female anorexic adolescents showed scores significantly worse than those of the normative European female adolescent population.
Conclusion
The observation of female adolescents with anorexia nervosa showed associations between higher physical fitness levels and better nutritional statuses. Handgrip strength and 20m shuttle run tests may be options of additional indicators of undernutrition in anorexic female adolescents. The undernourished anorexic patients showed worse physical fitness than the nourished ones. According to normative data for healthy sex- and agematched adolescents, physical fitness is severely impaired in anorexic female adolescents.
Referências
American Psychiatric Association. DSM-5. Manual Diagnóstico y Estadístico de los Trastornos Mentales. 5th ed. Madrid: Editorial Médica Panamericana; 2014.
Zipfel S, Giel KE, Bulik CM, Hay P, Schmidt U. Anorexia nervosa: aetiology, assessment, and treatment. Lancet Psychiat. 2015;2(12):1099-111. http://dx.doi.org/10.1016/S2215-0366(15)00356-9
Cederholm T, Barazzoni R, Austin P, Ballmer P, Biolo G, Bischoff SC, et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin Nutr. 2017;36(1):49-64. http://dx.doi.org/10.1016/j.clnu.2016.09.004
Murphy AJ, Hill RJ, Buntain H, White M, Brookes D, Davies PSW. Nutritional status of children with clinical conditions. Clin Nutr. 2017;36(3):788-92. http://dx.doi.org/10.1016/j.clnu.2016.05.014
Ignacio de Ulíbarri J, González-Madroño A, Villar NGP, González P, González B, Mancha A, et al. CONUT: a tool for controlling nutritional status: first validation in a hospital population. Nutr Hosp. 2005;20(1):38-45.
Zhang Y, Zhang X. Controlling nutritional status score, a promising prognostic marker in patients with gastrointestinal cancers after surgery: a systematic review and meta-analysis. Int J Surg. 2018;55:39-45. http://dx.doi.org/10.1016/j.ijsu.2018.05.018
Molina Soria JB, Lobo Támer G, Pérez de la Cruz AJ, Ruiz-López MD. Prevalence of malnutrition to income in a basic general hospital. Nutr Hosp. 2017;34(5):1390-8. http://dx.doi.org/10.20960/nh.1133
Júdice PB, Silva AM, Berria J, Petroski EL, Ekelund U, Sardinha LB. Sedentary patterns, physical activity and health-related physical fitness in youth: a cross-sectional study. Int J Behav Nutr Phys Act. 2017;14(1):25. http://dx.doi.org/10.1186/s12966-017-0481-3
Castro-Piñero J, Perez-Bey A, Segura-Jiménez V, Aparicio VA, Gómez-Martínez S, Izquierdo-Gomez R, et al. Cardiorespiratory fitness cutoff points for early detection of present and future cardiovascular risk in children: a 2-year follow-up study. Mayo Clin Proc. 2017;92(12):1753-62. http://dx.doi.org/10.1016/j.mayocp.2017.09.003
Palakshappa D, Virudachalam S, Oreskovic NM, Goodman E. Adolescent physical education class participation as a predictor for adult physical activity. Child Obes. 2015;11(5):616-23. http://dx.doi.org/10.1089/chi.2015.0024
Alberti M, Galvani C, Capelli C, Lanza M, El Ghoch M, Calugi S, et al. Physical fitness before and after weight restoration in anorexia nervosa. J Sports Med Phys Fitness. 2013 [cited 2020 Apr 8];53(4):396-402. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23828287
Li Q, Li X, Leng Y, Zhu X, Yao G. [Assessing nutritional status of severe malnutrition patients by bioelectrical impedance technique: a multicenter prospective study]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2018;30(2):181-4. http://dx.doi.org/10.3760/cma.j.issn.2095-4352.2018.02.017
Ohta M, Midorikawa T, Hikihara Y, Masuo Y, Sakamoto S, Torii S, et al. Validity of segmental bioelectrical impedance analysis for estimating fat-free mass in children including overweight individuals. Appl Physiol Nutr Metab. 2017;42(2):157-65. http://dx.doi.org/10.1139/apnm-2016-0137
ALPHA study Group. The ALPHA health-related fitness test battery for children and adolescents: test manual. Granada: Granada University; 2011 [cited 2020 Apr 8]. Available from: http://www.ugr.es/~cts262/ES/documents/ALPHA-FitnessTestManualforChildren-Adolescents.pdf
Ruiz JR, Castro-Pinero J, Espana-Romero V, Artero EG, Ortega FB, Cuenca MM, et al. Field-based fitness assessment in young people: the ALPHA health-related fitness test battery for children and adolescents. Br J Sports Med. 2011;45(6):518-24. http://dx.doi.org/10.1136/bjsm.2010.075341
Ortega FB, Artero EG, Ruiz JR, Espana-Romero V, Jimenez-Pavon D, Vicente-Rodriguez G, et al. Physical fitness levels among European adolescents: the HELENA study. Br J Sports Med. 2011;45(1):20-9. http://dx.doi.org/10.1136/bjsm.2009.062679
Segura-Jiménez V, Parrilla-Moreno F, Fernández-Santos JR, Esteban-Cornejo I, Gómez-Martínez S, MartinezGomez D, et al. Physical fitness as a mediator between objectively measured physical activity and clustered metabolic syndrome in children and adolescents: the UP&DOWN study. Nutr Metab Cardiovasc Dis. 20 16;26(11):1011-9. http://dx.doi.org/10.1016/j.numecd.2016.07.001
Bouma S. Diagnosing pediatric malnutrition: paradigm shifts of etiology-related definitions and appraisal of the indicators. Nutr Clin Pract. 2017;32(1):52-67. http://dx.doi.org/10.1177/0884533616671861
Golden NH, Katzman DK, Sawyer SM, Ornstein RM. Position paper of the society for adolescent health and medicine: medical management of restrictive eating disorders in adolescents and young adults references. J Adolesc Heal. 2015;56(1):121-5. http://dx.doi.org/10.1016/j.jadohealth.2014.10.259
Freedman DS, Lawman HG, Skinner AC, McGuire LC, Allison DB, Ogden CL. Validity of the WHO cutoffs for biologically implausible values of weight, height, and BMI in children and adolescents in NHANES from 1999 through 2012. Am J Clin Nutr. 2015;102(5):1000-6. http://dx.doi.org/10.3945/ajcn.115.115576
Carrascosa Lezcano A, Fernández García JM, Fernández Ramos C, Ferrández Longás A, López-Siguero JP, Sánchez González E, et al. [Spanish cross-sectional growth study 2008: part II: height, weight and body mass index values from birth to adulthood]. An Pediatr (Barc). 2008;68(6):552-69. http://dx.doi.org/10.1157/13123287
Achamrah N, Coeffier M, Dechelotte P. Physical activity in patients with anorexia nervosa. Nutr Rev. 2016;74(5):301-11. http://dx.doi.org/10.1093/nutrit/nuw001
Koletzko B. 3.22 Nutrition rehabilitation in eating disorders. World Rev Nutr Diet. 2015;113:259-65. http://dx.doi.org/10.1159/000375192
Achamrah N, Colange G, Delay J, Rimbert A, Folope V, Petit A, et al. Comparison of body composition assessment by DXA and BIA according to the body mass index: a retrospective study on 3655 measures. Plos One. 2018;13(7):e0200465. http://dx.doi.org/10.1371/journal.pone.0200465
Agüera Z, Romero X, Arcelus J, Sánchez I, Riesco N, Jiménez-Murcia S, et al. Changes in body composition in anorexia nervosa: predictors of recovery and treatment outcome. Plos One. 2015;10(11):e0143012. http://dx.doi.org/10.1371/journal.pone.0143012
Jensen KC, Bellini SG, Derrick JW, Fullmer S, Eggett D. Handgrip strength and malnutrition (undernutrition) in hospitalized versus nonhospitalized children aged 6-14 years. Nutr Clin Pract. 2017;32(5):687-93. http://dx.doi.org/10.1177/0884533617698098
Mei Z, Grummer-Strawn LM, Pietrobelli A, Goulding A, Goran MI, Dietz WH. Validity of body mass index compared with other body-composition screening indexes for the assessment of body fatness in children and adolescents. Am J Clin Nutr. 2002;75(6):978-85. http://dx.doi.org/10.1093/ajcn/75.6.978
Mandsager K, Harb S, Cremer P, Phelan D, Nissen SE, Jaber W. Association of cardiorespiratory fitness with longterm mortality among adults undergoing exercise treadmill testing. JAMA Netw Open. 2018;1(6):e183605. http://dx.doi.org/10.1001/jamanetworkopen.2018.3605
Musa TH, Li W, Xiaoshan L, Guo Y, Wenjuan Y, Xuan Y, et al. Association of normative values of grip strength with anthropometric variables among students, in Jiangsu Province. HOMO. 2018;69(1-2):70-6. http://dx.doi.org/10.1016/j.jchb.2018.03.007
Wakayo T, Belachew T, Whiting SJ. Serum vitamin D level associates with handgrip muscle strength among ethiopian schoolchildren: a cross-sectional study. Food Nutr Bull. 2018;39(1):54-64. http://dx.doi.org/10.1177/0379572117724545
Forero-Bogota MA, Ojeda-Pardo ML, Garcia-Hermoso A, Correa-Bautista JE, Gonzalez-Jimenez E, SchmidtRioValle J, et al. Body composition, nutritional profile and muscular fitness affect bone health in a sample of school children from Colombia: the Fuprecol study. Nutrients. 2017;9(2):106. http://dx.doi.org/10.3390/nu9020106
Steffl M, Chrudimsky J, Tufano JJ. Using relative handgrip strength to identify children at risk of sarcopenic obesity. Plos One. 2017;12(5):e0177006. http://dx.doi.org/10.1371/journal.pone.0177006
Dong B, Wang Z, Arnold L, Song Y, Wang HJ, Ma J. The association between blood pressure and grip strength in adolescents: does body mass index matter? Hypertens Res. 2016;39(12):919-25. http://dx.doi.org/10.1038/hr.2016.84
Lad UP, Satyanarayana P, Shisode-Lad S, Siri CC, Ratna Kumari N. A study on the correlation between the Body Mass Index (BMI), the body fat percentage, the handgrip strength and the handgrip endurance in underweight, normal weight and overweight adolescents. J Clin Diagnostic Res. 2013;7(1):51-4. http://dx.doi.org/10.7860/JCDR/2012/5026.2668
Zhang XS, Liu YH, Zhang Y, Xu Q, Yu XM, Yang XY, et al. Handgrip strength as a predictor of nutritional status in Chinese elderly inpatients at hospital admission. Biomed Environ Sci. 2017;30(11):802-10. http://dx.doi.org/10.3967/bes2017.108
Lu ZL, Wang TR, Qiao YQ, Zheng Q, Sun Y, Lu JT, et al. Handgrip strength index predicts nutritional status as a complement to body mass index in crohn’s disease. J Crohn’s Colitis. 2016;10(12):1395-400. http://dx.doi.org/10.1093/ecco-jcc/jjw121
Ramírez-Vélez R, Tordecilla-Sanders A, Correa-Bautista JE, Peterson MD, Garcia-Hermoso A. Handgrip strength and ideal cardiovascular health among Colombian children and adolescents. J Pediatr. 2016;179:82-89.e1. http://dx.doi.org/10.1016/j.jpeds.2016.08.099
Köhler A, King R, Bahls M, Groß S, Steveling A, Gärtner S, et al. Cardiopulmonary fitness is strongly associated with body cell mass and fat-free mass: the Study of Health in Pomerania (SHIP). Scand J Med Sci Sport. 2018;28(6):1628-35. http://dx.doi.org/10.1111/sms.13057
Gregorio L, Brindisi J, Kleppinger A, Sullivan R, Mangano KM, Bihuniak JD, et al. Adequate dietary protein is associated with better physical performance among post-menopausal women 60-90 years. J Nutr Health Aging. 2014;18(2):155-60. http://dx.doi.org/10.1007/s12603-013-0391-2
Reber E, Gomes F, Vasiloglou MF, Schuetz P, Stanga Z. Nutritional risk screening and assessment. J Clin Med. 2019;8(7):1065. http://dx.doi.org/10.3390/jcm8071065
Smelt HJM, Pouwels S, Celik A, Gupta A, Smulders JF. Assessment of physical fitness after bariatric surgery and its association with protein intake and type of cholecalciferol supplementation. Medicina (Kaunas). 2019;55(6):281. http://dx.doi.org/10.3390/medicina55060281
Tomkinson GR, Lang JJ, Blanchard J, Léger LA, Tremblay MS. The 20-m Shuttle run: assessment and interpretation of data in relation to youth aerobic fitness and health. Pediatr Exerc Sci. 2019;31(2):152-63. http://dx.doi.org/10.1123/pes.2018-0179
Gómez-Candela C, Palma Milla S, Miján-de-la-Torre A, Rodríguez Ortega P, Matía Martín P, Loria Kohen V, et al. Consenso sobre la evaluación y el tratamiento nutricional de los trastornos de la conducta alimentaria: anorexia nerviosa. Nutr Hosp. 2018;35(Spec No1):11-48. http://dx.doi.org/10.20960/nh.1562
Flood A, Chung A, Parker H, Kearns V, O’Sullivan TA. The use of hand grip strength as a predictor of nutrition status in hospital patients. Clin Nutr. 2014 Feb;33(1):106-14. http://dx.doi.org/10.1016/j.clnu.2013.03.003
Rodriguez Valero FJ, Alberto Gualteros J, Andres Torres J, Umbarila Espinosa LM, Ramirez-Velez R. Association between muscular fitness and physical health status among children and adolescents from Bogota, Colombia. Nutr Hosp. 2015;32(4):1559-66. http://dx.doi.org/10.3305/nh.2015.32.4.9310
Zhang M, Schumann M, Huang T, Törmäkangas T, Cheng S. Normal weight obesity and physical fitness in Chinese university students: an overlooked association. BMC Public Health. 2018;18(1):1334. http://dx.doi.org/10.1186/s12889-018-6238-3
Agata K, Monyeki MA. Association between sport participation, body composition, physical fitness, and social correlates among adolescents: the PAHL Study. Int J Environ Res Public Health. 2018;15(12):2793. http://dx.doi.org/10.3390/ijerph15122793
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Sofía María MARTÍNEZ-SÁNCHEZ, Tomás Eugenio MARTÍNEZ-GARCÍA, Diego MUNGUÍA-IZQUIERDO
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.