Sensibilidade ao contraste a grades senoidais de freqüências espaciais baixas em crianças
Palabras clave:
Criança, Percepção visual, Sensibilidade ao contrasteResumen
O objetivo deste trabalho foi determinar a função de sensibilidade ao contraste para freqüências espaciais de 0,25; 0,5; 1,0 e 2,0 ciclos por grau em crianças de 4 a 13 anos. Foram estimados limiares de contraste para 60 participantes (50 crianças e 10 adultos jovens), utilizando o método psicofísico da escolha forçada e nível baixo de luminância. Todos os participantes apresentavam acuidade visual normal e se encontravam livres de doenças oculares identificáveis. Os resultados mostraram que a função de sensibilidade ao contraste de crianças de 4-5, 6-7, 8-9, 10-11 e 12-13 anos melhora significativamente com a idade. Os resultados mostraram ainda que a função de sensibilidade ao contraste de crianças de 12-13 anos é semelhante à de adultos jovens (19-22 anos). Estes resultados sugerem que o desenvolvimento da função de sensibilidade ao contraste para grade senoidal em nível baixo de luminância melhora até os 12-13 anos.
Descargas
Citas
Adams, R. J., & Courage, M. L. (2002). Using a single test to measure human contrast sensitivity from early childhood to maturity. Vision Research, 42 (9), 1205-1210.
Akutsu, H., & Legge, G. E. (1995). Discrimination of compound gratings: spatial-frequency channels or local features? Vision Research, 35 (19), 2685-2695.
Allen, D., Tyler, C. W., & Norcia, A. M. (1996). Development of grating acuity and contrast sensitivity in the central and peripheral visual field of the human infant. Vision Research, 36 (13), 1945-1953.
Arundale, K. (1978). An investigation into the variation of human contrast sensitivity with age and ocular pathology. British Journal of Ophthalmology, 62 (4), 213-215.
Atkinson, J., Braddick, O., & Braddick, F. (1974). Acuity and contrast sensitivity of infant vision. Nature, 247 (5440), 403-404.
Atkinson, J., Braddick, O., & Moar, K. (1977). Contrast sensitivity of the human infant for moving and static patterns. Vision Research, 17 (9), 1045.1047.
Banks, M. S., & Bennett, P. J. (1988). Optical and photoreceptor immaturities limit the spatial and chromatic vision of human neonates. Journal of the Optical Society of America A, 5 (12), 2059-2079.
Benedek, G., Benedek, K., Kéri, S., & Janáky, M. (2003). The scotopic low-frequency spatial contrast sensitivity develops in children between the ages of 5 and 14 years. Neuroscience Letters, 345 (3), 161-164.
Billock, V., & Harding, T. (1996). Evidence of spatial and temporal channels in the correlational structure of human spatialtemporal contrast sensitivity. Journal of Physiology, 490 (2), 509-517.
Bour, L. J., & Apkarian, P. (1996). Selective broad-band spatial frequency loss in contrast sensitivity functions. Investigative Ophthalmology & Visual Science, 37 (12), 2475-2484.
Bradley, A., & Freeman, R. D. (1982). Contrast sensitivity in children. Vision Research, 22 (8), 953-959.
Brown, A. M., Dobson, V., & Maier, J. (1987). Visual acuity of human infants at scotopic, mesopic, and photopic luminances. Vision Research, 27 (10), 1845-1858.
Cannon JR, M. W. (1983). Contrast sensitivity: Psychophysical and evoked potential methods compared. Vision Research, 23 (1), 87-95.
Canto-Pereira, L. H. M., Lago, M., Costa, M. F., Rodrigues, A. R., Saito, C. A., Silveira, L. C. L., & Ventura, D. F. (2005). Visual impairment on dentists related to occupational mercury exposure. Environmental Toxicology and Pharmacology, 19 (3), 517-522.
Cornsweet, T. N. (1970). Visual perception New York: Academic Press.
Ellemberg, D., Lewis, T. L., Liu, C. H., & Maurer, D. (1999). Development of spatial and temporal vision during childhood. Vision Research, 39 (14), 2325-2333.
Ellemberg, D., Lewis, T. L., Maurer, D., & Brent, H. P. (2000). Influence of monocular deprivation during infancy on the later development of spatial and temporal vision. Vision Research, 40 (23), 3283-3295.
Elliott, D. B., & Situ, P. (1998). Visual acuity versus letter contrast sensitivity in early cataract. Vision Research, 38 (13), 2047-2052.
Georgeson, M. A., & Sullivan, G. D. (1975). Contrast Constancy: deblurring in human vision by spatial frequency channels. Journal of Physiology, 252 (3), 627-656.
Hickey, T. L. (1977). Postnatal development of the human lateral geniculate nucleus: Relationship to a critical period for the visual system. Science, 198 (4319), 836-838.
Kiorpes, L., & Movshon, J. A. (1998). Peripheral and central factors limiting the development of contrast sensitivity in macaque monkeys. Vision Research, 38 (1), 61-70.
Montés-Micó, R., & Ferrer-Blasco, T. (2001). Contrast sensitivity function in children: Normalized notation for the assessment and diagnosis of diseases. Documenta Ophthalmologica, 103 (3), 175-186.
Peterzell, D. H., Werner, J., & Kaplan, P. S. (1995). Individual differences in contrast sensitivity functions: longitudinal study of 4-, 6- and 8-month-old human infants. Vision Research, 35 (7), 961-979.
Polat, U., Sagi, D., & Norcia, A. M. (1997). Abnormal long-range spatial interactions in amblyopia. Vision Research, 37 (6), 737-744.
Richman, J. E., & Lyons, S. (1994). A forced choice procedure for evaluation of contrast sensitivity function in preschool children. Journal of the American Optometric Association, 65 (12), 859-864.
Santos, N. A., Nogueira, R. M. T. B. L., & Simas, M. L. B. (2005). Processamento visual da forma: evidências para canais múltiplos de freqüências angulares em humanos. Psicologia Reflexão & Crítica, 18 (1), 98-103.
Santos, N. A., Oliveira, A. B., Nogueira, R. M. T. B. L., & Simas, M. L. B. (2006). Mesopic radial frequency contrast sensitivity function for young and older adults. Brazilian Journal of Medical and Biological Research, 39 (6), 791-794.
Slaghuis, W. L., & Thompson, A. K. (2003). The effect of peripheral visual motion on focal contrast sensitivity in positive- and negative-symptom schizophrenia. Neuropsychologia, 41 (8), 968-980.
Suttle, C. M., & Turner, A. M. (2004). Transient pattern visual evoked potentials in children with Down's syndrome. Ophthalmic and Physiological Optics, 24 (2), 91-99.
van Sluyters, R. C., Atkinson, M. S., Held, R. M., Hoffman, K., & Shatz, C. J. (1990). the development of vision and visual perception. In S. W. Spillmann & J. S. Werner (Orgs.), The neurophysiological foundation (pp.349-379). New York: Academic Press.
Ventura, D. F., Simões, A. L., Tomaz, S., Costa, M. F., Lago, M., Costa, M. T. V., Canto-Pereira, L. H. M., Souza, J. M., Faria, M. A. M., & Silveira, L. C. L. (2005). Colour vision and contrast sensitivity losses of mercury intoxicated industry in Brazil. Environmental Toxicology and Pharmacology, 19 (3), 523-529.
Vleugels, L., van Nunen, A., Lafosse, C., Ketelaer, P., & Vandenbussche, E. (1998). Temporal and spatial resolution in foveal vision of multiple sclerosis patients. Vision Research, 38 (19), 2987-2997.
Wetherill, G. B., & Levitt, H. (1965). Sequential estimation of points on a psychometric function. The British Journal of Mathematical and Statistical Psychology, 48 (1), 1-10.
Wilson, H. R. (1988). Development of spatiotemporal mechanisms in infant vision. Vision Research, 28 (5), 611-628.
Wilson, H. R., Levi, D., Maffei, L., Rovamo, J., & De Valois, R. (1990). The perception of form: Retina to striate cortex. In S. W. Spillmann & J. S. Werner (Orgs.), Visual perception: the neurophysiological foundation (pp.231-271). New York: Academic Press.
Wilson, H. R., & Wilkinson, F. (1997). Evolving concepts of spatial channels in vision: from independence to nonlinear interactions. Perception, 26 (8), 939-960.
Yuodelis, C., & Hendrickson, A. (1986). A qualitative and quantitative analysis of the human fovea during development. Vision Research, 26 (6), 847-855.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Natanael Antonio dos SANTOS, Valtenice de Cássia Rodrigues de Matos FRANÇA
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.